ON THE MULTIPLE VALUES OF ALGEBROID FUNCTIONS*

ZONGSHENG GAO

Abstract

For any ν -valued algebroid function of finite order $\rho > 0$ in $|z| < \infty$, we prove the existence of the sequence of filling disks and Borel direction dealing with its multiple values.

1. Introduction

Valiron [1] conjectured that there exists at least a Borel direction for any ν -valued algebroid function of order ρ ($0 < \rho < \infty$). Rauch [2] proved that there exists a direction such that the corresponding Borel exceptional values form a set of linear measure zeros. Toda [3] proved that there exists a direction such that the set of corresponding Borel exceptional values is countable. Later Lü and Gu [4] proved that there exists a direction such that the number of Borel exceptional values is equal to 2ν at most. However, it was not discussed whether there exists a Borel direction dealing with its multiple values. In the present paper we investigate this problem.

Let w = w(z) be a v-valued algebroid function in $|z| < \infty$ defined by irreducible equation

(1)
$$A_{\nu}(z)w^{\nu} + A_{\nu-1}(z)w^{\nu-1} + \cdots + A_0(z) = 0,$$

where $A_{\nu}(z),\ldots,A_{0}(z)$ are entire functions without any common zero. The single valued domain of definition of w(z) is a ν -sheeted covering of z-plane, a Riemann surface, denoted by \tilde{R}_{z} . A point in \tilde{R}_{z} whose projection in the z-plane is z, is denoted by \tilde{z} . The part of \tilde{R}_{z} , which covers a disk |z| < r, is denoted by $|\tilde{z}| < r$. Let n(r,a) be the number of the zeros, counted according to their multiplicities, of w(z) - a in $|\tilde{z}| \le r$, $\bar{n}^{l}(r,a)$ be the number of distinct zeros with multiplicity $\le l$ of w(z) - a in $|\tilde{z}| \le r$. Let

¹⁹⁹¹ Mathematics Subject Classification: 30D35.

Key words: Algebroid function, Multiple Value, Borel direction.

^{*}Project supported by the National Natural Science Foundation of China.

Received May 30, 1997; revised February 8, 1999.