UNICITY THEOREMS FOR MEROMORPHIC FUNCTIONS

AMER H. H. AL-KHALADI*

Abstract

This paper studies the problem of uniqueness of meromorphic functions. In this paper we will improve a result given by K. Tohge.

§1. Introduction

By a "meromorphic function" we will mean a meromorphic function in the complex plane. It is assumed that the reader is familiar with the notations of the Nevanlinna theory that can be found, for instance, in [2] or [4]. Let f and g be two non-constant meromorphic functions and a be a value in the extended complex plane. We say that f and g share a value a IM (ignoring multiplicity), if f and g have the same a-points, and also they share the value a CM (counting multiplicity), if f and g have the same a-points with the same multiplicity. Let k be a positive integer or ∞ , we denote by $\overline{E}_{k}(a, f)$ the set of a-points of f with multiplicity $\leq k$ (ignoring multiplicity), by $N_{k}(r, 1/(f - a))$ the counting function of a-points of f with multiplicity ≥ 2 (See [4]). Finally we say a is a Picard exceptional value of f, if $f(z) \neq a$.

In [3] K. Tohge proved the following:

THEOREM 1. Let f and g be non-constant meromorphic functions that share three values $0, 1, \infty$ CM and f', g' share 0 CM. Then f and g satisfy one of the following:

- (i) $f \equiv g$, (ii) $fg \equiv 1$,
- (iii) $(f-1)(g-1) \equiv 1$,

 $(1.1) (iv) f+g \equiv 1,$

* Project supported by NSFC and RFDP 1991 *Mathematics Subject Classification*: 30D35 Received November 16, 1998; revised December 1, 1999.