MONOTONE DISCONTINUITY OF LATTICE OPERATIONS IN A QUASILINEAR HARMONIC SPACE

MITSURU NAKAI

Abstract

We claim, contrary to the linear case, that the lattice operations among harmonic functions are not necessarily monotone continuous in quasilinear harmonic spaces by showing the existence of a quasilinear harmonic space (X, H) in which there are harmonic functions u_n in $H(X)(n=1,2,\dots,\infty)$ with the following properties: the least harmonic majorant $u_n \lor 0$ and the greatest harmonic minorant $u_n \land 0$ of u_n and 0 exist in H(X) for every $n=1,2,\dots,\infty$; the sequence $(u_n)_{1 \le n < \infty}$ is increasing and convergent to u_∞ on X; the sequence $(u_n \land 0)_{1 \le n < \infty}$ converges increasingly to a harmonic function strictly less than $u_\infty \land 0$ on X.

1. Introduction

In the theory of \mathcal{A} -harmonic functions (including *p*-harmonic functions) as developed by Heinonen, Kilpeläinen, and Martio in their monograph [2], the order structure and in particular the induced lattice structure of the space of \mathcal{A} -harmonic functions (see 5 below) supplement the lack of its linear structure. In this sense the availability of the monotone continuity of lattice operations would greatly enrich the \mathcal{A} -harmonic function theory. More specifically, denote by $u \vee v$ ($u \wedge v$, resp.) the least \mathcal{A} -harmonic majorant (the greatest \mathcal{A} -harmonic minorant, resp.) of two \mathcal{A} -harmonic functions u and v on a region Ω of the mdimensional Euclidean space \mathbb{R}^m , if it exists. Consider \mathcal{A} -harmonic functions u_n ($n=1, 2, \dots, \infty$) such that both $u_n \vee 0$ and $u_n \wedge 0$ exist on Ω ($n=1, 2, \dots, \infty$). We wish to know whether the following statement is true or not.

2. STATEMENT. If the sequence $(u_n)_{1 \le n < \infty}$ is increasing and convergent to u_{∞} on Ω , then $(u_n \land 0)_{1 \le n < \infty}$ converges to $u_{\infty} \land 0$ on Ω :

$$\lim_{n\to\infty}u_n\wedge 0=u_\infty\wedge 0.$$

¹⁹⁹¹ Mathematics Subject Classification. Primary 31D05; Secondary 31C45, 31C20.

This work was partly supported by Grant-in-Aid for Scientific Research, No. 06640227, Japanese Ministry of Education, Science and Culture.

Received June 26, 1995; revised October 11, 1995.