A. ZAHARIAKODAI MATH. J.19 (1996), 218-233

ON THE BIFURCATION SET OF A POLYNOMIAL FUNCTION AND NEWTON BOUNDARY, II

Alexandru Zaharia

1. Introduction

1.1. Let $f: \mathbb{C}^n \to \mathbb{C}$ be a polynomial function and let us denote by B_f the *bifurcation set* of f, i.e. B_f is the smallest subset $\Gamma \subseteq \mathbb{C}$ such that the restriction $f: \mathbb{C}^n \setminus f^{-1}(\Gamma) \to \mathbb{C} \setminus \Gamma$ is a locally trivial fibration. It is well known that B_f is a finite set (see for example [13], [3], [11]) containing not only the set Σ_f of critical values of f, but also some *extra* values, corresponding to the so called "critical points at infinity". The problem of describing the bifurcation set B_f was considered by several authors, see for example: [3], [1], [10], [2], [12], [7]. In this note we would like to prove that certain values, given in [7] as possible elements of B_f , really belong to the bifurcation set of a Newton nondegenerate polynomial f.

1.2. We recall now some definitions and notations. Let $f: \mathbb{C}^n \to \mathbb{C}$ be a polynomial function. We shall assume that f(0)=0 If

$$f(z) := \sum_{\nu \in \mathbf{N}^n} a_{\nu} z^{\nu},$$

we denote:

 $\operatorname{supp}(f) := \{ \nu \in \mathbf{N}^n \mid a_\nu \neq 0 \} \subseteq \mathbf{R}^n,$

 $\overline{\operatorname{supp}(f)}$:= the convex closure in \mathbb{R}^n of $\operatorname{supp}(f)$,

 $\tilde{\Gamma}_{-}(f) :=$ the convex closure in \mathbb{R}^n of $\{0\} \cup \text{supp}(f)$.

For $\Delta \subseteq \mathbf{R}^n$ we put

$$f_{\Delta} := \sum_{\nu \in \Delta} a_{\nu} z^{\nu}$$

and we say that f is nondegenerate on Δ if the system of equations

$$\frac{\partial f_{\Delta}}{\partial z_1}(z) = \cdots = \frac{\partial f_{\Delta}}{\partial z_n}(z) = 0$$

has no solutions in $(C \setminus \{0\})^n$. We say that f is Newton nondegenerate if for every compact face Δ of $\tilde{\Gamma}_{-}(f)$, with $0 \notin \Delta$, we have that f is nondegenerate

Received April 5, 1995; revised August 4, 1995.