T. OGATA KODAI MATH. J. 18 (1995), 397-407

SURFACES WITH PARALLEL MEAN CURVATURE VECTOR IN $P^2(C)$

TAKASHI OGATA

1. Introduction

The set of surfaces with parallel mean curvature vector in Riemannian manifold, which includes all minimal surfaces in the manifold, has been studied by many geometers. Especially, Chen [1] and Yau [7] studied them in the case that the ambient space is an n-dimensional real space form $\bar{M}^n(c)$ of constant sectional curvature c. They proved that if $x: M \rightarrow \bar{M}^n(c)$ is an isometric immersion with parallel mean curvature vector of a two-dimensional Riemannian manifold M into $\bar{M}^n(c)$, then x(M) is one of the following surfaces: (1) a minimal surface in $\bar{M}^n(c)$, (2) a minimal surface of a small hypersphere of $\bar{M}^n(c)$, and (3) a surface with constant mean curvature in a 3-sphere of $\bar{M}^n(c)$. This shows that the study of surfaces in $\bar{M}^n(c)$ with parallel mean curvature vector is reduced to that of minimal surface except the case (3).

On the other hand, concerning the surfaces with parallel mean curvature vector in a complex space form, we know several minimal surfaces in the *n*-dimensional complex projective space $P^{n}(C)$ with the Fubini-Study metric of constant holomorphic sectional curvature 4ρ . Moreover, many results characterizing them have been obtained (cf. [2], [3], [4], [5], [6]). However, when we concern with non-minimal surfaces in $P^{n}(C)$ with parallel mean curvature vector, not many such examples are known so far, even for n=2.

In Sections 1 and 2 of the previous paper [5], we developed a local theory of surfaces in $P^n(C)$ by using the Kaehler function. By applying it, in this paper we shall study non-minimal immersions $x: M \rightarrow P^2(C)$ with parallel mean curvature vector. In fact, in Section 2 we obtain basic formulas for such surfaces in a 2-dimensional Kaehler manifold of constant holomorphic sectional curvature 4ρ . Then, in Sections 3 and 4, we show a method of the local construction of such immersions. Finally, in Section 5 we determine isometric immersions with parallel mean curvature vector field of a Riemannian 2-manifold with constant Gaussian curvature into $P^2(C)$. Theorem 5.2 generalizes a theorem by Ludden, Okumura and Yano [4].

Mathematical Subject Classification (1991): 53A10, 53C42, 53C55 Received July 20, 1994; revised July 25, 1995.