H. ZHONG KODAI MATH. J. 18 (1995), 250-259

ENTIRE FUNCTIONS THAT SHARE ONE VALUE WITH THEIR DERIVATIVES

HUALIANG ZHONG

Abstract

The paper generalizes a result of [2] and makes an example which shows that the generalization is precise. Also we get similar conclusions in other cases.

§1. Introduction

We say that nonconstant meromorphic functions f and g share the value a provided that f(z)=a if and only if g(z)=a. We will state whether the shared value is by CM (counting multiplicities) or by IM (ignoring multiplicities).

L. Rubel and C.C. Yang proved the following theorem:

THEOREM A^[1]. Let f(z) be a nonconstant entire function. If f and f' share two distinctive values a and b IM, then $f \equiv f'$.

1986, Jank, Mues and Volkman proved:

THEOREM B^[2]. Let f(z) be a nonconstant entire function. If f and f' share the value $a \ (a \neq 0)$, and f''(z) = a when f(z) = a, then $f \equiv f'$.

It is asked naturally whether the f'' of Theorem B can be simply replaced by $f^{(k)}$ $(k \ge 3)$. We make an example which shows that the answer of this question is negative.

Let k be a positive integer $(k \ge 3)$ and let $\omega(\ne 1)$ be a (k-1)-th root of unity. Set $g(z) = e^{\omega z} + \omega - 1$. It is easy to know that g, g' and $g^{(k)}$ share the value ω CM, but $g \equiv g'$ and $g \equiv g^{(k)}$.

Between the example and Theorem B we will prove the following results.

THEOREM 1. Let f(z) be a nonconstant entire function. If f and f' share the value $a \ (a \neq 0)$ CM, and $f^{(n)}(z) = f^{(n+1)}(z) = a \ (n \ge 1)$ when f(z) = a, then $f \equiv f^{(n)}$.

Received Mach 7, 1994; revised July 26, 1994.