NEF LINE BUNDLES ON ALGEBRAIC SURFACES

HIDETOSHI MAEDA

§0. Introduction

In this paper we assume throughout that the ground field k is algebraically closed and of characteristic $p \ge 0$.

Let X be a projective surface and L a line bundle on X. When L is nef (i.e., $LC \ge 0$ for all integral curves C on X), the pair (X, L) will be called a *semipolarized surface*. We say that two semipolarized surfaces (X_1, L_1) and (X_2, L_2) are birationally equivalent if there is a projective surface W with birational morphisms $f_1: W \to X_1$ (i=1, 2) such that $f_1^*L_1 = f_2^*L_2$. Moreover, if X is normal, the sectional genus g(X, L) of the semipolarized normal surface (X, L)is given by the formula $2g(X, L)-2=(\omega_X+L)L$, where ω_X is the canonical sheaf of X.

Lanteri and Palleschi proved the following on the assumption that L is an ample line bundle on a smooth complex projective surface X.

THEOREM 0.1 ([LP], Remark 1.3). Let L be an ample line bundle on a smooth complex projective surface X. Then one of the following holds.

- (1) $K_x + L$ is nef for the canonical bundle K_x of X.
- (2) $(X, L) \cong (P^2, \mathcal{O}_P(1)).$
- (3) $(X, L) \cong (\mathbf{P}^2, \mathcal{O}_{\mathbf{P}}(2)).$
- (4) (X, L) is a scroll over a smooth curve (For the definition of a scroll, see § 1.).

THEOREM 0.2 ([LP], Remark 1.1 and Corollary 2.3). Let L be an ample line bundle on a smooth complex projective surface X. Then $g(X, L) \ge 0$. Moreover, if g(X, L)=0, then (X, L) is one of the following.

- (1) $(X, L) \cong (\mathbf{P}^2, \mathcal{O}_{\mathbf{P}}(1)).$
- (2) $(X, L) \cong (\mathbf{P}^2, \mathcal{O}_{\mathbf{P}}(2)).$
- (3) (X, L) is a scroll over P^1 .

THEOREM 0.3 ([LP], Corollary 2.4). Let L be an ample line bundle on a smooth complex projective surface X. If g(X, L)=1, then (X, L) is one of the following.

Received May 19, 1994; revised June 20, 1994.