S. ROPPONGI KODAI MATH. J. 18 (1995), 44-56

ON SINGULAR SOLUTIONS FOR A SEMILINEAR ELLIPTIC EQUATION

SUSUMU ROPPONGI

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^n $(n \ge 2)$ with smooth boundary $\partial \Omega$. And let Σ be a C^{∞} -compact submanifold of Ω of dimension m $(0 \le m \le n-1)$. We take an arbitrary $\alpha(x) \in C^{\infty}(\Sigma)$ such that $\alpha(x) > 0$ on Σ and consider the following equation.

(1.1)
$$\begin{cases} -\Delta u = u^p + \alpha \delta_{\Sigma} & \text{in } \mathcal{D}'(\Omega) \quad (p > 1) \\ 0 \leq u \in C^2(\Omega \setminus \Sigma), \end{cases}$$

where δ_{Σ} is the measure defined by

(1.2)
$$\langle \boldsymbol{\delta}_{\boldsymbol{\Sigma}}, \boldsymbol{\eta} \rangle = \int_{\boldsymbol{\Sigma}} \boldsymbol{\eta}(\boldsymbol{\sigma}) d\boldsymbol{\sigma}$$

for any $\eta \in C_0^{\infty}(\Omega)$.

What can one say about the existence of a solution of (1.1) and the local behaviour of its solution near Σ ? We have the following.

THEOREM 1. There exists a solution of (1.1) if and only if $1 <math>(1 if <math>n-m \le 2$). And there exists a solution u of (1.1) satisfying

(1.3)
$$\begin{cases} C_1 d(x)^{-(n-m-2)} \leq u(x) \leq C_2 d(x)^{-(n-m-2)} & near \ \Sigma \ (if \ m \leq n-3) \\ C_1 |\log d(x)| \leq u(x) \leq C_2 |\log d(x)| & near \ \Sigma \ (if \ m=n-2) \\ u(x) \in C^0(\mathcal{Q}) \quad (if \ m=n-1), \end{cases}$$

where d(x) denotes the distance between x and Σ . Here C_1 and C_2 denote some positive constants.

THEOREM 2. Assume that p < n/(n-2) $(p < \infty$ if n=2). Then the same bounds as in (1.3) hold for any u satisfying (1.1) and, in addition,

(1.4)
$$u \in L^p_{\text{loc}}(\Omega)$$
 if $m=n-1$.

Received May 2, 1992; revised February 21, 1994.