HAYMAN DIRECTION OF MEROMORPHIC FUNCTIONS

Jinghao Zhu

Abstract

Let f be meromorphic in the plane. Then f has a Hayman direction provided that $$
\limsup _{r \rightarrow \infty} \frac{T(r, f)}{(\log r)^{2}}=\infty
$$

1. Introduction

We define a Hayman direction of a meromorphic function $f(z)$ to be a ray $\arg z=\theta, 0 \leqq \theta \leqq 2 \pi$, such that for every positive integer l and positive $\varepsilon>0$,

$$
\begin{equation*}
\lim _{r \rightarrow \infty}\left[n(r, \theta-\varepsilon, \theta+\varepsilon, f=a)+n\left(r, \theta-\varepsilon, \theta+\varepsilon, f^{(l)}=b\right)\right]=\infty \tag{1}
\end{equation*}
$$

holds for all $(a, b) \in C \times[C-0]$, where

$$
n(r, \theta-\varepsilon, \theta+\varepsilon, g=\beta)
$$

is the number of roots of $g-\beta=0$ in the region

$$
[|z|<r] \cap[|\arg z-\theta|<\varepsilon]
$$

Yang, Lo [1] proved that for given meromorphic function f there is a ray $\arg z=\theta$ which satisfies (1) provided that

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{T(r, f)}{(\log r)^{3}}=\infty \tag{2}
\end{equation*}
$$

A problem posed in [3] asks whether (2) could be replaced by the usual existing condition of classical Julia directions

$$
\begin{equation*}
\underset{r \rightarrow \infty}{\lim \sup } \frac{T(r, f)}{(\log r)^{2}}=\infty \tag{3}
\end{equation*}
$$

In this paper we prove that there is a ray $\arg z=\theta$ satisfying (1) provided that (3) holds.

[^0]
[^0]: Received June 21, 1993 ; revised January 10, 1994.

