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Introduction

Fix an odd prime p. Let Apn be the alternating group on pn letters. Denote by Σpn p

a Sylow p-subgroup of Apn and En an elementary abelian p-group of rank n. Then we
have the restriction homomorphisms

Res(£n, Apn) : H*(BAP*) — >

induced by the regular permutation representation En C Σpn>p C Apn of En (see Mύi
[4]). Here and throughout the paper, we assume that the coefficients are taken in the
prime field Z/p. Using modular invariant theory of linear groups, Mύi proved in [3], [4]
that

ImRes(£n, Apn) = £(Mn,0, . . . , Mn,n-i) <S> P(Ln, Qn,ι, . . . , <2n,n-ι).

Here and in what follows, E(., . . . , . ) and P(., . . . , . ) are the exterior and polynomial alge-
bras over Z/p generated by the variables indicated. Ln,Qn)S are the Dickson invariants
of dimensions pn , 2(pn — ps], and Mn>s, &*, 14 are the Mύi invariants of dimensions
pn — 2ps, pk~l , 2pk~~1 respectively (see §1).

Let A be the mod p Steenrod algebra and let rs, & be the Milnor elements of
dimensions 2ps — 1, 2pz — 2 respectively in the dual algebra A* of A. In [7], Milnor
showed that, as an algebra

A =

Then A* has a basis consisting of all monomials τsξ
R = rβl . . . τSkξ[l . . .£^m, with 5 =

), 0 < 5ι < ... < sjb, Λ = (rι,...,rm), r, > 0. Let 5f5'Λ ζA denote the dual
of TS£R with respect to that basis. Then A has a basis consisting all operations Sts>R.
For 5 = 0, Λ = (r), 5^0'(r) is nothing but the Steenrod operation Pr .

Since H*(BG), G - En

 y Σpn)ί? or A pn, is an A-module (see [13 Chap. VI]) and the
restriction homomorphisms are Λ-linear, their images are A-submodules of H*(BEn).

The purpose of the paper is to study the module structures of ImRes(E'n, Σpn ) P ) and
ImRes(E'n) Apn) over the Steenrod algebra A. More precisely, we prove a duality relation
between Sts^R(M^9Q^9

δ) and Sts' ̂  (U^V^) for δ = 0, 1, l(R) = Jb and ̂ (/?) = n.
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