ON THE FUNDAMENTAL GROUP OF THE COMPLEMENT OF ARRANGEMENTS

BY NGUYEN VIET DUNG

Let V be a vector space of finite dimension. An arrangement of hyperplanes in V is a finite collection \mathcal{A} of hyperplanes of V. An arrangement \mathcal{A} will be said to be real (resp. complex) if V is a real (resp. complex) vector space. The complexification of a hyperplanes H of \mathbb{R}^n is the hyperplane $H_{\mathbb{C}}$ of \mathbb{C}^n having the same equation as H. Given an arrangement \mathcal{A} in \mathbb{R}^n , we have its complexification $\mathcal{A}_{\mathbb{C}}$ to be the complex arrangement $\{H_{\mathbb{C}}; H \in \mathcal{A}\}$ in \mathbb{C}^n .

Given an arrangement \mathcal{A} , we are interested in finding a presentation for the fundamental group $\pi_1(M)$ of the complement

$$M = V - \bigcup_{H \in \mathcal{A}} H$$

in case \mathcal{A} is a complex arrangement, and $\pi_1(M_{\mathbf{C}})$ of the complement of $\mathcal{A}_{\mathbf{C}}$ in case \mathcal{A} is a real arrangement. In [2] we have suggested a geometrical method to compute the fundamental group of a manifold equipped with a suitable cellular decomposition. Also, given a real arrangement \mathcal{A} in \mathbf{R}^n , we have introduced a certain cellular decomposition $\mathcal{C}(\mathbf{C}^n, \mathcal{A})$ of \mathbf{C}^n , induced from the arrangement \mathcal{A} . In this note, we will apply our method to this decomposition to find a presentation for $\pi_1(M_{\mathbf{C}})$ of any real arrangement \mathcal{A} . Such a presentation has been given by M. Salvetti in [4] using his complex. After reducing the problem to the case of dimension 2, W. Arvola has suggested an algorithm to find a presentation for the complement of a complex arrangement. In a sequent paper [3] we will also treat the case when \mathcal{A} is a complex arrangement.

We first recall of our method suggested in [2]. Let \mathcal{M} be a connected topological-manifold of dimension n with a locally finite CW-semicomplex structure $\mathcal{C}_{\mathcal{M}}$ such that \mathcal{M} is 1-codimensionally regular (see [2] for the notion of CW-semicomplex and 1codimensional regularity). Each (n-1)-cell σ of \mathcal{M} is a face of exactly two *n*-cells, say c and c'. Then we have two *n*-intervals $[c, \sigma, c']$ and $[c', \sigma, c]$. We specify one of them by $[\sigma]$ and the other by $[\sigma]^{-1}$. A *n*-path γ on \mathcal{M} is a join of a finite number of *n*-intervals

$$\gamma = [\sigma_1]^{\epsilon_1} \vee [\sigma_2]^{\epsilon_2} \vee \cdots \vee [\sigma_k]^{\epsilon_k},$$

where $\epsilon_i = \pm 1$, σ_i are (n-1)-cells of \mathcal{M} , $1 \leq i \leq k$. If $[\sigma_1]^{\epsilon_1} = [c, \sigma_1, c_1]$ and $[\sigma_k]^{\epsilon_k} = [c_k, \sigma_k, c']$, for some *n*-cells c, c_1, c_k and c' we say that γ is a *n*-path from c to c'. Among *n*-paths on the manifold \mathcal{M} we have defined in [2] a certain equivalence relation.

Let \mathcal{M} be given a base point * belonging to a certain *n*-cell c_0 . Then, the equivalence classes of closed *n*-paths at * form a group denoted by $\pi_1(\mathcal{C}_{\mathcal{M}}, *)$. In [2] we have proved the isomorphism $\pi_1(\mathcal{C}_{\mathcal{M}}, *) \cong \pi_1(\mathcal{M}, *)$. So, in order to compute $\pi_1(\mathcal{M}, *)$, it suffices to compute $\pi_1(\mathcal{C}_{\mathcal{M}}, *)$. And the latter can be determined by means of the decomposition $\mathcal{C}_{\mathcal{M}}$ as below

Received June 28, 1993.