FACTORED ARRANGEMENTS OF HYPERPLANES

BY MICHEL JAMBU AND LUIS PARIS

Let **K** be a field and let V be a vector space over **K**. An arrangement of hyperplanes in V is a finite family \mathcal{A} of hyperplanes of V through the origin. An arrangement \mathcal{A} of hyperplanes is said to be *real* (resp. *complex*) if **K** = **R** is the field of real numbers (resp. if **K** = **C** is the field of complex numbers).

With an arrangement \mathcal{A} of hyperplanes, one can associate a graded torsion-free Zalgebra $\mathcal{A}(\mathcal{A})$, called the *Orlik-Solomon algebra* of \mathcal{A} . If \mathcal{A} is a complex arrangement, then $\mathcal{A}(\mathcal{A})$ is isomorphic to the cohomology algebra of the *complement*

$$M(\mathcal{A}) = V - (\cup_{H \in \mathcal{A}} H)$$

of \mathcal{A} (see [OS1]). The Poincaré polynomial Poin (\mathcal{A}, t) of \mathcal{A} is the Poincaré polynomial of $A(\mathcal{A})$, namely,

$$\operatorname{Poin}(\mathcal{A},t) = \sum_{n=0}^{\infty} \dim(A^n(\mathcal{A}))t^n$$

We refer to [Or] and [OT] for good expositions on the theory of arrangements of hyperplanes and, more precisely, on Orlik-Solomon algebras.

Let \mathcal{A} be a real arrangement of hyperplanes. A chamber of \mathcal{A} is a connected component of $V - (\bigcup_{H \in \mathcal{A}} H)$. We denote by $\mathcal{C}(\mathcal{A})$ the set of chambers of \mathcal{A} . For $C, D \in \mathcal{C}(\mathcal{A})$, we denote by $\mathcal{S}(C, D)$ the set of hyperplanes of \mathcal{A} which separate C and D. For a fixed chamber $C_0 \in \mathcal{C}(\mathcal{A})$, we partially order $\mathcal{C}(\mathcal{A})$ by

$$C \leq D$$
 if $\mathcal{S}(C_0, C) \subseteq \mathcal{S}(C_0, D)$.

 $\mathcal{C}(\mathcal{A})$ provided with this order is denoted by $P(\mathcal{A}, C_0)$. It is a ranked bounded poset of finite rank, where rank $(C) = |\mathcal{S}(C_0, C)|$ for $C \in \mathcal{C}(\mathcal{A})$. Its smallest element is C_0 and its greatest one is the chamber $-C_0$ opposite to C_0 . The rank-generating function of $P(\mathcal{A}, C_0)$ is

$$\zeta(P(\mathcal{A},C_0),t) = \sum_{C\in\mathcal{C}(\mathcal{A})} t^{\mathrm{rank}(C)}$$

The poset $P(\mathcal{A}, C_0)$ has been introduced and investigated by Björner, Edelman and Ziegler [Ed] [BEZ].

Let \mathcal{A} be a real arrangement of hyperplanes. If \mathcal{A} is either a supersolvable arrangement or a Coxeter arrangement, then there exist some integers b_1, \ldots, b_l and a chamber $C_0 \in \mathcal{C}(\mathcal{A})$ such that the Poincaré polynomial of \mathcal{A} factors as

(1)
$$\operatorname{Poin}(\mathcal{A},t) = \prod_{i=1}^{t} (1+b_i t)$$

Received June 19, 1993.