X.-S. ZHANG KODAI MATH. J. 17 (1994), 262-272

GEOMETRY AND TOPOLOGY OF SUBMANIFOLDS IMMERSED IN SPACE FORMS AND ELLIPSOIDS

BY XUE-SHAN ZHANG

Abstract

Let M^m be a compact submanifold of a simply connected space form $N^n(c)$ with $c \ge 0$. Denote by s and H the square length of the second fundamental form and the mean curvature vector field of M respectively. By introducing a selfadjoint linear operator Q^A associated with the shape operator of M, we show that there are no stable currents in M and topologically, M is a sphere if $s < H^2/(m-1)$. For an immersed submanifold of the ellipsoid we show that appropriate assumption on Q^A implies the vanishing of a given homology group.

1. Introduction

Let M^m be a submanifold immersed in a Riemannian manifold N^n . Denote by V(N, M) the normal bundle of M in N. For a smooth section $\nu \in C(V(N, M))$, the shape operator A_{ν} determined by ν is given by

$$\langle A_{\nu}X, Y \rangle = \langle h(X, Y), \nu \rangle$$

where X, $Y \in C(TM)$ and h is the second fundamental form of M.

In 1973, by using techniques of the calculus of variations in geometric measure theory, H.B. Lawson and J. Simons [4] showed the following

THEOREM LS. Let M^m be a compact submanifold of S^n and p a given integer, $p \in (0, m)$. If for any $x \in M$ and any orthonormal basis $\{e_i, e_\alpha\}$ $(i=1, \dots, p; \alpha = p+1, \dots, m)$ of $T_x M$ the following condition is satisfied

$$\sum_{\alpha} [2 \| h(e_{\alpha}, e_{\alpha}) \|^{2} - \langle h(e_{\alpha}, e_{\alpha}), h(e_{\alpha}, e_{\alpha}) \rangle] < p(m-p),$$

then there is no stable p-current in M and hence

 $[\]ast$ This research is supported by the Science Foundation Grant of Shaanxi Province, P.R. China

¹⁹⁹¹ Mathematics Subject Classification: 49Q15, 53C20 Received June 7, 1993.