S. SEGAWA KODAI MATH. J. 17 (1994), 256-261

HARMONIC DIMENSION AND EXTREMAL LENGTH

Dedicated to Professor Nobuyuki Suita on his sixtieth birthday

By Shigeo Segawa

Consider an open Riemann surface R with a single ideal boundary component. A subregion $V(\neq R)$ of R is said to be an *end* of R if V is relatively noncompact in R and the relative boundary ∂V consists of finitely many analytic Jordan curves. Denote by $\mathcal{P}(V)$ the class of nonnegative harmonic functions on V with vanishing boundary values on ∂V :

$$\mathcal{P}(V) = \{h \in HP(V) : h \mid \partial V = 0\},\$$

where HP(V) is the class of nonnegative harmonic functions on V. The dimension of the linear space $\mathcal{P}(V) \ominus \mathcal{P}(V) = \{h_1 - h_2 : h_1, h_2 \in \mathcal{P}(V)\}$ is referred to as the harmonic dimension of V (cf. Heins [4]), dim $\mathcal{P}(V)$ in notation. It is known that dim $\mathcal{P}(V)$ does not depend on a choice of an end V of R (cf. [4]): dim $\mathcal{P}(V_1) = \dim \mathcal{P}(V_2)$ for any pair (V_1, V_2) of ends of R.

Denote by O_G the class of open Riemann surfaces of null boundary and by M the class of open Riemann surfaces $R \in O_G$ such that there exists an end V of R with dim $\mathcal{P}(V)=1$. In terms of Martin compactification an R belongs to M if and only if R is of null boundary and the Martin boundary of Rconsists of a single point (cf. e.g. Constantinescu and Cornea [3]). We are particularly interested in the following result by Heins [4] (see also [7]):

THEOREM A. Let V be an end and $\{A_n\}$ be a sequence of mutually disjoint annuli in V satisfying that A_{n+1} separates A_n from the ideal boundary of V for every n. If the sum of moduli of A_n diverges, then dim $\mathcal{P}(V)=1$.

We also denote by O''_{s} the class of open Riemann surfaces having a regular exhaustion $\{R_n\}_{n=0}^{\infty}$ such that each $A_n = R_{2n} - \overline{R_{2n-1}}$ $(n=1, 2, \cdots)$ is a doubly connected region and $\sum_{n=1}^{\infty} \mod A_n = \infty$, where $\mod A_n$ is the modulus of A_n . Then the above Heins' result is restated as

$O''_{s} \subset M$.

^{*} This work was partially supported by Grant-in Aid for Scientific Research, No. 04302006, Japanese Ministry of Education, Science and Culture.

Received June 5, 1993.