HOMOGENIZATION OF A REFLECTING BARRIER BROWNIAN MOTION IN A CONTINUUM PERCOLATION CLUSTER IN R^d

Dedicated to Professor Hiroshi Tanaka on his 60th birthday

By Hideki Tanemura*

1. Introduction and statement of result

Let \mathfrak{M} be the set of all countable subsets η of \mathbf{R}^{d} $(d \geq 2)$ satisfying $N_{K}(\eta) < \infty$ for any compact subset K, where $N_{4}(\eta)$ is the number of points of η in $A \subset \mathbf{R}^{d}$. \mathfrak{M} is equipped with $\mathfrak{B}(\mathfrak{M})$ the σ -field which is generated by $\{\eta \in \mathfrak{M} : N_{4}(\eta) = n\}$, $A \in \mathfrak{B}(\mathbf{R}^{d})$, $n \in N$. For $\eta \in \mathfrak{M}$, r > 0 and two disjoint regions A_{1} and A_{2} in \mathbf{R}^{d} , we say that a continuous curve γ is an occupied (*resp.* a vacant) connection of A_{1} and A_{2} in a region A with respect to (η, r) if $\gamma \cap A_{1} \neq \emptyset$, $\gamma \cap A_{2} \neq \emptyset$, $\gamma \subset A$ and $\gamma \subset U_{r}(\eta)$ (*resp.* $\gamma \cap \overline{U_{r}(\eta)} = \emptyset$), where $U_{r}(\eta)$ stands for the *r*-neighborhood of η and $U_{r}(x)$ is the abbreviated form for $U_{r}(\{x\})$. A continuum percolation model is obtained if a distribution ν on the space $[0, \infty) \times \mathfrak{M}$ is given. In this paper we consider the case $\nu = \delta_{r} \otimes \mu_{\lambda}$, r > 0, $\lambda > 0$, where δ_{r} is the Dirac measure corresponding to the point r and μ_{λ} is a Poisson distribution on \mathfrak{M} with intensity measure λdx , that is, for any disjoint system $\{A_{1}, A_{2}, \dots, A_{m}\} \subset \mathfrak{B}(\mathbf{R}^{d})$ such that $|A_{1}| = \int_{A_{1}} dx < \infty$, $i = 1, 2, \dots, m$, $N_{A_{1}}(\eta), \dots, N_{A_{m}}(\eta)$ are independent random variables on the probability space (\mathfrak{M}, \mathfrak{R}(\mathfrak{M}), \mu_{\lambda}) and

$$\mu_{\lambda}(N_{A_{i}}=n)=\frac{(\lambda|A_{i}|)^{n}}{n!}\exp(-\lambda|A_{i}|), \quad i=1, 2, ..., m, n \in \mathbb{N} \cup \{0\}.$$

This percolation model is called the 'Poisson blob model'. (See Grimmett [9].) It should be viewed as a continuum analogue of the discrete site percolation model. Instead of sites being independently occupied we have a Poisson process on \mathbf{R}^d with each Poisson point being the center of an occupied ball of radius r. Now we define two regions in \mathbf{R}^d ,

^{*} Research supported in part by Grant-in-Aid for Scientific Research (No. 04740102), Ministry of Education, Science and Culture.

Keywords: Poisson distribution, continuum percolation model, reflecting Brownian motion, central limit theorem.

Received January 27, 1993; revised September 28, 1993.