ON SLANT IMMERSIONS INTO KÄHLER MANIFOLDS

By Sadahiro Maeda, Yoshihiro Ohnita and Seiichi Udagawa

Introduction.

Let $\varphi: M \rightarrow N$ be an isometric immersion of a Riemannian manifold into an almost Hermitian manifold with almost complex structure \tilde{J} . Then, φ is called *slant* if the angle between $\int \varphi_*(X)$ and $\varphi_*(T_pM)$ is constant for any $X \in T_pM$ and any $p \in M$. The typical examples of slant immersions are Kähler immersions and totally real immersions, where the slant angles are 0 and $\pi/2$, respectively. A slant immersion is called *proper* if it is neither a Kähler immersion nor a totally real immersion. In the case where M is a Riemann surface and N is a Kähler manifold, the slant angle was introduced as the Kähler angle and studied by S. S. Chern and J. G. Wolfson [CW]. Examples of slant immersions of a Riemann sphere S^2 into a complex projective space CP^n were given as the Veronese sequence of harmonic maps from S^2 , which are classified in [BO] and [BJRW] in the case where S^2 has constant curvature (see also [O1]). The present concept of slant immersion was first introduced and studied by B.Y. Chen [C]. The examples of proper slant immersions into C^4 are given in [C-T]. Recently, Tazawa [T] has given examples of slant immersions into C^n with any given slant angle. However, there are a few results on slant submanifolds in CP^n . In this case, any general method to check whether given an immersion is slant or not is not known.

The main purpose of this paper is to study slant submanifolds in $\mathbb{C}P^n$. In Section 1, we give some sufficient conditions for an isometric immersion φ of a compact Kähler manifold M into a Kähler manifold N to be slant (Theorem 1.2, Proposition 1.3). In Theorem 2.1 of Section 2, we show that the condition of Theorem 1.2 is satisfied for a G-equivariant isometric immersion of a Kähler C-space M with $b_2(M)=1$ into $\mathbb{C}P^n$. In this case, the slant angle is explicitly given by $\cos^{-1}(4\pi |\deg(\varphi)|/\tilde{c} \operatorname{vol}(S))$, where S is a rational curve of M which represents a positive generator of $H_2(M; \mathbb{Z})$ and \tilde{c} is a (constant) holomorphic sectional curvature of $\mathbb{C}P^n$. Consequently, it turns out that $\operatorname{SU}(m+1)$ -equivariant isometric immersions of $\mathbb{C}P^m$ into $\mathbb{C}P^N$ constructed and treated by the first and second author ([M], [O2]) are slant, and that pluriharmonic maps constructed in [OU] give many examples of proper slant immersions into $\mathbb{C}P^n$.

Received July 20, 1992.