M. OKA KODA1 MATH. J. 16 (1993), 181-195

FINITENESS OF FUNDAMENTAL GROUP OF COMPACT CONVEX INTEGRAL POLYHEDRA

By Mutsuo Oka

§1. Introduction and statement of the result.

Let Δ_i , $i=1, \dots, k$, be given compact convex integral polyhedra in \mathbb{R}^m . We consider the following integer "combinatorial connectivity" $\alpha(\Delta_1, \dots, \Delta_k)$ which is defined in [Ok6] by

$$\alpha(\Delta_1, \cdots, \Delta_k) = \min\left\{\dim\left(\sum_{i\in I} \Delta_i\right) - |I|; I \subset \{1, \cdots, k\}, I \neq \emptyset\right\}.$$

We assume that $\alpha(\Delta_1, \dots, \Delta_k) \ge 0$. For any integral covector P, we consider the restriction $P|_{\Delta_i}$ to Δ_i of the corresponding linear function associated with P. Let $\Delta(P; \Delta_i)$ be the face where $P|_{\Delta_i}$ takes its minimal value ([Ok5, 6]). We denote the lattice of the integral covectors by N. We define the subgroup $K(\Delta_1, \dots, \Delta_k)$ of N by

$$K(\Delta_1, \cdots, \Delta_k) = \langle P \in N; \alpha(\Delta(P; \Delta_1), \cdots, \Delta(P; \Delta_k)) \ge 0 \rangle.$$

Here $\langle P \in N; P \in S \rangle$ is the subgroup of N which is generated by the covectors P in S. We also define $\prod_1(\Delta_1, \dots, \Delta_k) := N/K(\Delta_1, \dots, \Delta_k)$. We call $K(\Delta_1, \dots, \Delta_k)$ (respectively $\prod_1(\Delta_1, \dots, \Delta_k)$) the boundary lattice group (resp. the fundamental group) of the k-ple of polyhedra $\{\Delta_1, \dots, \Delta_k\}$. The purpose of this paper is to prove:

MAIN THEOREM (1.1). The boundary lattice group $K(\Delta_1, \dots, \Delta_k)$ has rank m if and only if $\alpha(\Delta_1, \dots, \Delta_k) \ge 1$.

The geometric interpretation is as follows. Let $h_1(u)$, \cdots , $h_k(u)$ be Laurent polynomials such that the respective Newton polygon $\Delta(h_i)$ is equal to Δ_i , for $i=1, \dots, k$. Let us consider the variety:

$$Z^* = \{ u \in C^{*m} ; h_1(u) = \cdots = h_k(u) = 0 \}.$$

We can choose the coefficients of h_1, \dots, h_k so that Z^* is a non-degenerate complete intersection variety in the sense of [Kh1, 2, Ok4, 5]. See §4 for the existence of such Laurent polynomials $h_1(u), \dots, h_k(u)$. Z^* is non-empty if and

Received January 21, 1993.