F. ICHIKAWA KODAI MATH. J. 15 (1992), 134-140

THOM'S CONJECTURE ON SINGULARITIES OF GRADIENT VECTOR FIELDS

By Fumio Ichikawa

1. Introduction.

In [3], R. Thom gave the following conjecture.

CONJECTURE. Let f(x) be a germ of real analytic function at the origin $0 \in \mathbb{R}^n$ and let $X = \operatorname{grad} f(x)$ be the gradient vector field of f(x) with respect to the ordinary Riemannian metric on \mathbb{R}^n . If an integral curve g(t) of X tends to the origin $0 \in \mathbb{R}^n$, then there exists a unique tangential direction $\lim_{t\to+\infty} g(t)/|g(t)|$.

Thom proved the case where f(x) is a homogeneous polynomial and for the general case he gave an outline of a proof. In this paper, we give a partial answer to the above problem. The essential idea of our proof is the same as Thom's one (see [3]).

Let $f(x): (R^n, 0) \rightarrow (R, 0)$ be a germ of analytic function. And we express f(x) in the form

$$f(x) = P_k(x) + P_{k+1}(x) + \dots + P_m(x) + \dots$$

where $P_m(x)$ is a homogeneous polynomial of degree m.

We define the cone spectrum $Sp(P_m)$ as follows:

$$Sp(P_m) = \left\{ x = (x_1, \dots, x_n) \in \mathbb{R}^n; x_i \frac{\partial P_m}{\partial x_j} = x_j \frac{\partial P_m}{\partial x_i} \ i, j = 1, \dots, n \right\}.$$

Obviously, $Sp(P_m)$ is a cone algebraic set and it contains $0 \in \mathbb{R}^n$.

In this paper, we prove the following theorem.

THEOREM. Let $f(x)=P_k(x)+P_{k+1}(x)+\cdots$ be a real analytic function germ at $0 \in \mathbb{R}^n$. If dim $Sp(P_k) \leq 1$, then any integral curve of grad f(x) which tends to $0 \in \mathbb{R}^n$ has a unique tangential direction at the origin.

Remark. We see later on that the condition dim $Sp(P_k) \leq 1$ is equivalent to that the restricted function $P_k|_{S^{n-1}}$ of $P_k(x)$ to the unit sphere S^{n-1} has only isolated singularities. Thus, the above condition is a generic property on the initial term of f(x).

Received June 21, 1991.