ANALYSIS AND TOPOLOGY OF HYPERPLANE COMPLEMENTS: THE GENERALIZED WITT FORMULA

BY MICHEL JAMBU

Introduction.

The classical Witt formula which gives the dimensions of the homogeneous components of the free Lie algebra over a finite set, has a nice interpretation as a relation between the topology, i.e. cohomology and homotopy of the complement of a finite set of C, and the analysis, i.e. an ordinary linear differential equation with regular singular points at this finite set of C.

Such a relation remains true for complements of some hyperplane arrangements such as *complexified Coxeter arrangements* and *fiber-type arrangements*.

Namely, let \mathcal{A} be a finite family of hyperplanes of \mathbb{C}^n through the origin and let $M = \mathbb{C}^n \setminus \bigcup_{H \in A} H$ be the complement. The cohomology algebra $H^*(M; K)$, where $K = \mathbb{Z}$, \mathbb{Q} , \mathbb{R} or \mathbb{C} is isomorphic to \mathcal{E}/I where \mathcal{E} is the free exterior algebra over \mathcal{A} and I is the ideal defined by some dependence relations between the hyperplanes of \mathcal{A} . Moreover:

$$P_{\mathcal{M}}(t) = \sum_{p \ge 0} (\operatorname{rank} H^p(M)) t^p = \sum_{x \in L(A)} \mu(x) (-t)^{\operatorname{codim} x}$$

where $L(\mathcal{A})$ is the lattice of intersections hyperplanes ordered by reverse inclusion, $\mu(x) = \mu(0, x)$, μ being the Möbius function. These results are due to P. Orlik and L. Solomon [OS].

The algebra of the integrable logarithmic connections along \mathcal{A} is called the *holonomy Lie algebra* of M and is denoted \mathcal{G}_M . T. Kohno [K1] showed that \mathcal{G}_M =Lib $(A)/\mathcal{N}$ where $|A| = |\mathcal{A}|$ and \mathcal{N} is the ideal defined by some dependence relations between the hyperplanes of \mathcal{A} .

Let \mathcal{L}_M be the *Malcev algebra* of M which is obtained (cf Sullivan [S]) from the 1-minimal model of M. Using the mixed Hodge structure on the minimal model, T. Kohno [K2] showed that:

$$\mathcal{G}_M^* \approx \mathcal{L}_M$$

where $\mathscr{G}_{\mathcal{M}}^{*}$ is the nilpotent completion of $\mathscr{G}_{\mathcal{M}}$. Then T. Kohno [K3] proved that:

$$\varphi_{J}(M) = \dim \left(\Gamma_{J} \mathcal{G}_{M} / \Gamma_{J+1} \mathcal{G}_{M} \right) = \operatorname{rank} \left(\Gamma_{J} \pi_{1}(M) / \Gamma_{J+1} \pi_{1}(M) \right)$$

Received February 8, 1991.