S. DENG KODAI MATH. J. 14 (1991), 470-476

THE SECOND VARIATION OF THE DIRICHLET ENERGY ON CONTACT MANIFOLDS

BY SHANGRONG DENG

1. Introduction

S.S. Chern and R.S. Hamilton in a paper of 1985 [5] studied a kind of Dirichlet energy in terms of the torsion $\tau(\tau = \mathcal{L}_{\xi}g)$ of a 3-dimensional compact contact manifold and a problem analogous to the Yamabe problem. They raised the question of determining all 3-dimensional contact manifolds with $\tau=0$ (i.e. K-contact). In a long paper of 1989 [8] S. Tanno studied the Dirichlet energy and gauge transformations of contact manifolds. D.E. Blair [2] obtained the critical point condition of $I(g) = \int_{\mathcal{M}} Ric(\xi) dV_g$ over $\mathcal{M}(\eta)$ (the space of all the associated metrics), and proved that the regularity of the characteristic vector field ξ and the critical point condition force the metric to be K-contact. Since $Ric(\xi)=2n-1/4|\tau|^2$, the study of I(g) is the same as the study of the Dirichlet energy. In this paper we investigate the second variation and prove the following result.

THEOREM 2. Let M^{2n+1} be a compact contact manifold. If g is a critical metric of the Dirichlet energy $L(g) = \int_{M} |\tau|^2 dV_g$, i.e. $\nabla_{\xi} L_{\xi} g = 2(\mathcal{L}_{\xi} g) \phi$, then along any path $g_{ij}(t) = g_{ir} [\delta_j^r + tH_j^r + t^2 K_j^r + O(t^3)]$ in $\mathcal{M}(\eta)$

$$\frac{d^2L}{dt^2}(0)=2\int_{\mathcal{M}}|\mathcal{L}_{\xi}H_{j}^{i}|^2dV_{g}\geq 0,$$

and L(g) has minimum at each critical metric.

The author would like to thank Professor David E. Blair for his constant encouragement and help.

2. Contact manifolds

A C^{∞} manifold M^{2n+1} is said to be a *contact manifold* if it carries a global 1-form η such that $\eta \wedge (d\eta)^n \neq 0$ everywhere. Given a contact form η it is well

Received February 5, 1991; revised April 15, 1991.