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GENERALIZED HOPF MANIFOLDS, LOCALLY

CONFORMAL KAEHLER STRUCTURES

AND REAL HYPERSURFACES

BY SORIN DRAGOMIR

Abstract

We study the geometry of submanifolds of complex Hopf manifolds en-
dowed with the (locally conformal Kaehler) Boothby metric.

1. Generalized Hopf manifolds and the Boothby metric.

Let fleC, 0 < | α | < l , be a fixed complex number; let Ga be the discrete
group of complex analytic transformations of W—Cn— {0}, n > l , generated by
z^az, z(=W. Then Ga acts freely and properly discontinuously on W, see [28],
vol. II, p. 137, so that the quotient space Hn

a=W/Ga becomes in a natural way
a complex w-dimensional manifold. This is the well known complex Hopf mani-
fold. In their attempt to construct complex structures on products SιxL,
where S1 is the unit circle and L an odd dimensional homotopy sphere, E. Bries-
korn & A. Van de Ven, [3], have generalized Hopf manifolds a follows. Let
n > l and (fe0, ••• , bn)^Zn+1, bj^l, 0£j£n. Let (z0, ••• , zn) be the natural
complex coordinates on C n + 1 . Define X2n(b) = X2n(b0, ••• , fc»)cCn+1 by the
equation:

Then X2n(b) ia an aίϊine algebraic variety with one singular point at the origin
of Cn+1 if bj^2, / = 0 , -" n (and without singularities if b3—\ for at least one
/). Next B2n{b)—X2n(b)— {0} is a complex n-dimensional manifold, referred
hereafter as the Brieskorn manifold determined by the integers b0, ••• , bn. See
[2]. There is a natural holomorphic action of C on B2n(b) given by:

t(Zo, —, ^ n ) = ( ^ O e X p ( - - y ^ ) , ••• , Zn ΘXp (—-y^ ) ) (1)

where f e C , wa=— log \a \— iΦa, Φα=arctan(/m(α)//?β(fl)), —π/2<Φa<π/2,

Received July 4, 1990 revised December 25, 1990.

366


