S. DRAGOMIR KODAI MATH. J. 14 (1991), 366–391

GENERALIZED HOPF MANIFOLDS, LOCALLY CONFORMAL KAEHLER STRUCTURES AND REAL HYPERSURFACES

BY SORIN DRAGOMIR

Abstract

We study the geometry of submanifolds of complex Hopf manifolds endowed with the (locally conformal Kaehler) Boothby metric.

1. Generalized Hopf manifolds and the Boothby metric.

Let $a \in C$, 0 < |a| < 1, be a fixed complex number; let G_a be the discrete group of complex analytic transformations of $W = C^n - \{0\}$, n > 1, generated by $z \mapsto az$, $z \in W$. Then G_a acts freely and properly discontinuously on W, see [28], vol. II, p. 137, so that the quotient space $H_a^n = W/G_a$ becomes in a natural way a complex *n*-dimensional manifold. This is the well known *complex Hopf manifold*. In their attempt to construct complex structures on products $S^1 \times L$, where S^1 is the unit circle and L an odd dimensional homotopy sphere, E. Brieskorn & A. Van de Ven, [3], have generalized Hopf manifolds a follows. Let $n \ge 1$ and $(b_0, \dots, b_n) \in \mathbb{Z}^{n+1}$, $b_j \ge 1$, $0 \le j \le n$. Let (z_0, \dots, z_n) be the natural complex coordinates on \mathbb{C}^{n+1} . Define $X^{2n}(b) = X^{2n}(b_0, \dots, b_n) \subset \mathbb{C}^{n+1}$ by the equation:

$$(z_0)^{b_0} + \cdots + (z_n)^{b_n} = 0$$

Then $X^{2n}(b)$ is an affine algebraic variety with one singular point at the origin of C^{n+1} if $b_j \ge 2$, $j=0, \dots n$ (and without singularities if $b_j=1$ for at least one j). Next $B^{2n}(b)=X^{2n}(b)-\{0\}$ is a complex *n*-dimensional manifold, referred hereafter as the *Brieskorn manifold* determined by the integers b_0, \dots, b_n . See [2]. There is a natural holomorphic action of C on $B^{2n}(b)$ given by:

$$t(z_0, \cdots, z_n) = \left(z_0 \exp\left(-\frac{tw_a}{b_0}\right), \cdots, z_n \exp\left(-\frac{tw_a}{b_n}\right)\right)$$
(1)

where $t \in C$, $w_a = -\log |a| - i\Phi_a$, $\Phi_a = \arctan(Im(a)/Re(a))$, $-\pi/2 < \Phi_a < \pi/2$,

Received July 4, 1990; revised December 25, 1990.