I. DIMITRIĆ KODAI MATH. J. 14 (1991), 281–295

1-TYPE SUBMANIFOLDS OF THE COMPLEX PROJECTIVE SPACE

By Ivko Dimitrić

§0. Introduction.

The standard way to define the complex projective space CP^m is by means of Hopf fibration $\pi: S^{2m+1} \rightarrow CP^m$ where CP^m is obtained as a quotient space of $S^{2m+1} \subset C^{m+1}$ under the natural action of the group S^1 of complex numbers of norm 1. It is not completely trivial to find an isometric embedding of CP^m into a Euclidean space, the most natural one (the first standard embedding) defined as follows. For $p \in CP^m$ pick $z \in \pi^{-1}(p) \subset S^{2m+1}$ and let $\phi(p) = z\bar{z}^i$ (z is regarded as a column vector in C^{m+1}). Then ϕ is a well defined map that embeds CP^m into the set H(m+1) of Hermitian matrices of degree m+1, the latter being a Euclidean space of dimension $N=(m+1)^2$. Now if $x: M^n \rightarrow CP^m$ is an isometric immersion of a compact *n*-dimensional Riemannian manifold into the complex projective space, than we also have the associated immersion $\tilde{x}=\phi \circ x: M^n \rightarrow H(m+1)=E^N$.

On the other hand, there is a notion of finite type immersion $f: M^n \rightarrow E^N$ whereby a compact Riemannian manifold M^n is said to be of k-type (via f) if f is globally decomposable as $f=f_0+f_1+\cdots+f_k$, where $f_0=\text{const}$ (could be 0) and f_i 's are vector eigenfunctions of Laplacian from k+1 different eigenspaces [3]. For example, a well known result of Takahashi [15] characterizes compact 1-type submanifolds as minimal in a hypersphere of E^N . Studying finite type immersions is difficult in general, but there have been several results on low type submanifolds of CP^m . In particular, A. Ros has the following classification of CR-minimal submanifolds of CP^m which are of 1-type via the first standard embedding.

THEOREM A [10]. Let M^n be a compact CR-minimal submanifold of CP^m . Then M^n is of 1-type via ϕ if and only if

a) n is even and M^n is congruent to the complex projective space $CP^{n/2}$ immersed as a totally geodesic complex submanifold of CP^m .

b) M^n is a totally real minimal submanifold of a complex totally geodesic CP^n in CP^m .

Received July 4, 1990; revised December 10, 1990.