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We denote by 2 the punctured unit disk 0<|z| <1 and consider a Schréd-
inger equation

>, @ .
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on £. The potential P is assumed to be nonnegative and locally Hoélder con-
tinuous on 0<]z|<1 and referred to as a density on £. We say that the
Picard principle is valid for P (at the origin z=0) if the set Fp(2) of nonnega-
tive solutions of (1) on £ with vanishing boundary values on the unit circle
I': |z|=1 is generated by one element u of Fp(2): Fe(2)={cu: c=0}. In other
words the Picard principle is valid for P at the origin if and only if the Martin
ideal boundary of £ over the origin with respect to (1) consists of one point.
Let P be a density on £ for which the Picard principle is valid and Q a density
on 2 with Q<P on £. The Picard principle for Q is generally invalid ([8],
[9]). However the Picard principle for @ is valid if densities P and Q are
rotation free, i.e. P(z)=P(|z|) and Q(z)=Q(|z|) on £ ([7]). Moreover the
Picard principle for Q is valid if Q<P on a subset of 2 for some densities P
([2]). In this note we will study this subset of £ for the special densities
P(z)=|z|* and P(z)=(og|z|)*/|z|?.

Hereafter every density P on £ in consideration is assumed to be rotation
free and is mainly viewed as a function P(») of  in the interval (0,1]. In
order to define the above subsets of £ .we take two sequences {a,}%, {b.}3
which are always supposed to satisfy

0<bpi<a,<b, <l (n=1,2, ), Lin; a,=0

and we set

A=A({au}, {6a)= U [an, bs1.
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