A CLASSIFICATION OF 3-DIMENSIONAL CONTACT METRIC MANIFOLDS WITH $Q \varphi=\varphi Q$

By David E. Blair, Themis Koufogiorgos* and Ramesh Sharma

1. Introduction

The assumption that ($M^{2 m+1}, \varphi, \xi, \eta, g$) is a contact metric manifold is very weak, since the set of metrics associated to the contact form η is huge. Even if the structure is η-Einstein we do not have a complete classification. Also for $m=1$, we know very little about the geometry of these manifolds [8]. On the other hand if the structure is Sasakian, the Ricci operator Q commutes with φ ([1], p. 76), but in general $Q \varphi \neq \varphi Q$ and the problem of the characterization of contact metric manifolds with $Q \varphi=\varphi Q$ is open. In [13] Tanno defined a special family of contact metric manifolds by the requirement that ξ belong to the k-nullity distribution of g. We also know very little about these manifolds (see [13] and [9]). In §3 of this paper we first prove that on a 3-dimensional contact metric manifold the conditions, i) the structure is η-Einstein, ii) $Q \varphi=\varphi Q$ and iii) ξ belongs to the k-nullity distribution of g are equivalent. We then show that a 3-dimensional contact metric manifold on which $Q \varphi=\varphi Q$ is either Sasakian, flat or of constant ξ-sectional curvature k and constant φ-sectional curvature $-k$. Finally we give some auxiliary results on locally φ-symmetric contact metric 3 -manifolds and on contact metric 3 -manifolds immersed in a 4 dimensional manifold of contant curvature +1 .

2. Preliminaries

$A C^{\infty}$ manifold $M^{2 m+1}$ is said to be a contact manıfold, if it carries a global 1 -form η such that $\eta \wedge(d \eta)^{m} \neq 0$ everywhere. We assume throughout that all manifolds are connected. Given a contact form η, it is well known that there exists a unique vector field ξ, called the characteristic vector field of η, satisfying $\eta(\xi)=1$ and $d \eta(\xi, X)=0$ for all vector fields X. A Riemannian metric g is said to be an associated metric if there exists a tensor field φ of type $(1,1)$ such that

$$
\begin{equation*}
d \eta(X, Y)=g(X, \varphi Y), \eta(X)=g(X, \xi), \varphi^{2}=-I+\eta \otimes \xi \tag{2.1}
\end{equation*}
$$

[^0]
[^0]: * This work was done while the second author was a visiting scholar at Michigan State University.

 Received May 2, 1990.

