INTERPOLATING SEQUENCES ON PLANE DOMAINS

Dedicated to Professor T. Fuji'i'e on his 60th birthday

By Junichiro Narita

1. Let D be an arbitrary open set in C, and $H^{\infty}(D)$ be the set of all bounded analytic functions on D. A sequence $\{z_j\}$ in D is called $(H^{\infty}(D)$ -interpolating sequence if for all bounded sequences $\{a_j\}$, the interpolation problem

$$f(z_i) = a_i$$
, $j = 1, 2, 3, \cdots$

has a solution f(z) in $H^{\infty}(D)$. Since L. Carleson characterized the interpolating sequence in the unit disk in [3], several authors have studied interpolating sequences in more general plane domains (for example [2], [7]). In this paper we study interpolating sequences in an arbitrary plane domain and in a certain plane domain satisfying some geometrical condition.

In § 2, we show the following theorem by which we see that the interpolating sequence can be characterized in terms of its local behavior.

THEOREM 1. Let $S = \{z_j\}$ be a sequence in an arbitrary open set D of the complex plane C. If for all $\zeta \in C$, there exists some neighborhood U of ζ such that $S \cap U$ is an $H^{\infty}(D \cap U)$ -interpolating sequence, then S is an $H^{\infty}(D)$ -interpolating sequence.

When $\{z_j\}$ is an $H^{\infty}(D)$ -interpolating sequence, the open mapping theorem shows that

$$M = \sup_{\|\{a_j\}\|_{\infty} \le 1} \inf \{ \|f\|_{\infty} : f \in H^{\infty}(D), f(z_j) = a_j, j = 1, 2, 3, \dots \} < \infty,$$

where $\|\{a_j\}\|_{\infty} = \sup |a_j|$. This constant M is called the constant of interpolation for $\{z_j\}$ (in D). For $\Delta = \{|z| < 1\}$, L. Carleson [3] showed that a sequence $\{z_j\}$ in Δ is the interpolating sequence if and only if

$$\delta = \inf_{k} \prod_{\substack{j=1\\j\neq k}}^{\infty} \left| \frac{z_k - z_j}{1 - \bar{z}_k z_j} \right| > 0.$$

The constant of interpolation M for $\{z_j\}$ is estimated by the inequalities (see

Received May 8, 1989; revised Decembea 22, 1989.