S. TANNO KODAI MATH. J. 13 (1990), 204-209

INTEGRALS OF SOME TRIGONOMETRIC FUNCTIONS

By Shukichi Tanno

1. Introduction

Let a and b be positive numbers, and u, v and m be positive integers such that u+v=m, $2 \le m$. We define I(m) and I(u; v) by

$$I(m) = \int_0^\infty \frac{\sin^m a t}{t^m} dt, \qquad I(u; v) = \int_0^\infty \frac{\sin^u a t \sin^v b t}{t^m} dt.$$

Tables of integrals give values of I(m) and I(u; v) only for some special cases. For example, for $3 \le m \le 6$, Gradshteyn and Ryzhik [4] (p. 449-p. 450) gives

$$I(3) = 3a^2 \pi/8, \qquad I(4) = a^3 \pi/3,$$

$$I(5) = 115a^4 \pi/384, \qquad I(6) = 11a^5 \pi/40.$$

As for I(u; v) with a < b, [4] (p. 451-p. 452) gives

$$\begin{split} I(2;2) &= (3b-a)a^2 \pi/6 & (a < b), \\ I(3;1) &= a^3 \pi/2 & (0 < 3a \le b) \\ &= [24a^3 - (3a-b)^3] \pi/48 & (0 < a < b \le 3a), \\ I(1;3) &= (9b^2 - a^2)a\pi/24 & (a < b). \end{split}$$

In this note we give the general expressions of I(m) and I(u; v). These are special cases of Theorem A below. To state our Theorem A we need the following definition. Let a_1, a_2, \dots, a_m be positive numbers such that $0 < a_1 \le a_2 \le \dots \le a_{m-1} \le a_m$. For a subset $\lambda = \{k_1, k_2, \dots, k_{m-r}\}$ of $\{1, 2, \dots, m-1\}$, a polynomial

$$P_r(\lambda) = a_{k_1} + a_{k_2} + \dots + a_{k_{m-r}} - a_{k_{m-r+1}} - \dots - a_{k_{m-1}} - a_m$$

is said to be of r-type, if $\{a_{k_1}, a_{k_2}, \cdots, a_{k_{m-1}}, a_m\} = \{a_1, a_2, \cdots, a_m\}$ as sets and

$$P_r(\lambda) > 0$$
, $k_1 < k_2 < \cdots < k_{m-r}$, $k_{m-r+1} < \cdots < k_{m-1}$.

Note that a_m appears with negative sign and r is the number of negative signs contained in a polynomial of r-type. A polynomial of 1-type is unique if it exists.

Received November 28, 1989.