P. JÄRVI
KODAI MATH. J.
13 (1990), 84–87

ON THE BOUNDARY BEHAVIOR OF HOLOMORPHIC MAPPINGS OF PLANE DOMAINS INTO RIEMANN SURFACES

By Pentti Järvi

1. Since the pioneering work of Ohtsuka ([7], [8]), several papers have dealt with Picard-type theorems for holomorphic mappings of plane domains into Riemann surfaces. See, e.g., [2], [4], [5], [6], [9], [10], [12] and [13]. In this note we shall consider the behavior around null-sets of class N_B and N_D (in the familiar notation of Ahlfors-Beurling [1]) of holomorphic mappings into certain Riemann surfaces. Our result concerning the class N_B (Theorem 1) can be regarded as a generalization of a recent result of Shiga [12, Theorem 2].

2. We begin with some terminology. Let W be a Riemann surface and $E \subset W$ a compact totally disconnected set. We say that E is of class N_B (resp. N_D) in W if for each $p \in E$ there is a parametric disc (V, φ) in W such that $p \in V$, $E \cap \partial V = \emptyset$ and $\varphi(E \cap V)$ is of class N_B (resp. N_D). Let W^* stand for the Stoïlow compactification of W, and let $p \in \beta = W^* \setminus W$. We say that p is AB-removable (resp. AD-removable) if there is a planar end $V \subset W$ with $p \in \beta_V$, the relative ideal boundary of V, and a conformal map φ of \overline{V} into the closed unit disc $\overline{U} \subset C$ such that $\varphi(\partial V) = \partial \overline{U}$ and $\overline{U} \setminus \varphi(\overline{V})$ is of class N_B (resp. N_D). Obviously, $p \in \beta$ is AB-removable if and only if there is a Riemann surface $W' \supset W$ such that $p \in W' \setminus W$ and $W' \setminus W$ is of class N_B in W'. As usual, \mathcal{O}_{AB} denotes the class of Riemann surfaces which do not carry nonconstant bounded holomorphic functions, while \mathcal{O}_{MD^*} stands for the class of Riemann surfaces without non-constant meromorphic functions with a finite spherical Dirichlet integral.

THEOREM 1. Let D be a plane domain and let $E \subset D$ be a compact set of class N_B . Let W be a Riemann surface which does not belong to \mathcal{O}_{AB} , and let $f: D \setminus E \rightarrow W$ be a holomorphic mapping. Then there exists a Riemann surface $W' \supset W$ such that

(a) $W' \ W$ is of class N_B in W' and

(b) f extends to a holomorphic mapping $f^*: D \rightarrow W'$.

Proof. We may assume that f is nonconstant. Let g be a nonconstant bounded holomorphic function in W. Since $E \in N_B$, $g \circ f$ admits a holomorphic

Received June 26, 1989