SUBMANIFOLDS OF QUATERNION PROJECTIVE SPACE WITH BOUNDED SECOND FUNDAMENTAL FORM

By Partick Coulton and Hillel Gauchman

Abstract. Let h be the second fundamental form of a compact submanifold M of the quaternion projective space $HP^{n}(1)$. For any unit vector $u \in TM$, set $\delta(u) = \|h(u, u)\|^{2}$. We determine all compact totally complex submanifolds of $HP^{n}(1)$ (resp. all compact totally real minimal submanifolds of $HP^{n}(1)$) satisfying condition $\delta(u) \leq \frac{1}{4}$ (resp. $\delta(u) \leq \frac{1}{12}$) for all unit vectors $u \in TM$.

1. Introduction.

Let M be a smooth *m*-dimensional Riemannian manifold isometrically immersed in an (m+p)-dimensional Riemannian manifold \tilde{M} . Let h denote the second fundamental form of this immersion. For each $x \in M$, h is a bilinear mapping from $TM_x \times TM_x$ into TM_x^{\perp} , where TM_x is the tangent space of Mat x and TM_x^{\perp} is the normal space. We denote by S(x) the square of the length of h at $x \in M$. By Gauss' equation we have $S(x)=m(m-1)-\rho(x)$, whenever M is immersed as a minimal submanifold of $S^{m+p}(1)$ with scalar curvature $\rho(x)$ at x in M. Therefore S(x) is an intrinsic invariant of M.

In 1968, J. Simons [12] discovered for the class of compact minimal *m*-dimensional submanifolds of the unit (m+p)-sphere that the totally geodesic submanifolds are isolated in the following sense: If S(x) < n/(2-1/p) for all $x \in M$, then $S(x) \equiv 0$ on M, and thus M is totally geodesic. In [1], S.S. Chern, M do Carmo, and S. Kobayashi determined all minimal submanifolds of the unit sphere satisfying $S(x) \equiv n/(2-1/p)$. Later similar results were obtained for various types of minimal submanifolds of the complex projective spaces and the quaternion projective spaces.

Let $T: UM \to M$ and UM_x denote the unit tangent bundle of M along with its fibre over $x \in M$. We set $\delta(u) = \|h(u, u)\|^2$ for $u \in UM$. Observe that $\delta(u)$ is not an intrinsic invariant of the submanifold M. However, like S(x), $\delta(u)$ can be considered as a natural measure of the degree to which an immersion fails to be totally geodesic.

In [10], and [11], A. Ros proved that if M is a compact Kaehler submanifold of $\mathbb{CP}^{n}(1)$ and if $\delta(u) < 1/4$, for any $u \in UM$, then M is totally geodesic in

Received May 23, 1988.