H. MUTO KODAI MATH. J. 12 (1989), 109–115

ON THE STABILITY OF A THREE-SPHERE

BY HIDEO MUTO

1. Introduction.

Let (M^m, g) be an *m*-dimensional closed connected Riemannian manifold. The identity mapping id_M of M is a harmonic mapping, that is, a critical point of the first variation of the energy functional. (M^m, g) is said to be stable when the second variation of the energy functional at id_M is non-negative and otherwise, (M, g) is said to be unstable. The *m*-dimensional $(m \ge 3)$ unit spheres are unstable. And unstable, simply connected compact irreducible symmetric spaces were determined (see Smith [6], Nagano [4], Ohnita [5] and Urakawa [11]).

Closed manifolds with negative Ricci curvature and closed Kaehler manifolds are examples of stable manifolds. Since Gao and Yau [1] proved the existence of a metric with negative Ricci curvature on every 3-dimensional closed manifold, there exists a stable metric on every 3-dimensional closed manifold.

Recently Urakawa [12] and Tanno [9] studied some deformation of the standard metric g_0 on S^{2n+1} $(n \ge 1)$ with constant sectional curvature one. Let (CP^n, h) be the complex projective space with the Fubini-Study metric with constant holomorphic sectional curvature 4 and $\pi: (S^m, g_0) \rightarrow (CP^n, h) (m=2n+1)$ be the Hopf fibration. Let ξ be the unit Killing vector field on S^m which is tangent to each fibre and η be the dual 1-form of ξ with respect to g_0 . We define a one-parameter family $g(t), 0 < t < \infty$, of Riemannian metrics on S^m by

$$g(t) = t^{-1}g_0 + t^{-1}(t^m - 1)\eta \otimes \eta$$
.

THEOREM (Tanno [9]) For $m=2n+1\geq 3$ and $t>t_0(m)$, $(S^m, g(t))$ is unstable, where $t_0(m)=[\{(m^2-4)^{1/2}-1\}/(m^2-5)]^{1/m}$.

In this note, we show:

THEOREM A. $(S^3, g(t))$ is stable if and only if $t \le t_0(3) = [\sqrt{5} - 1/4]^{1/3} = 0.676 \cdots$.

Remark 1. The sectional curvature $K_{\sigma}(t)$ of g(t) is positive for $0 < t < (4/3)^{1/3}$ (see Tanno [9]). In fact, for t < 1, $t^4 \leq K_{\sigma}(t) \leq t(4-3t^3)$ and for $t \geq 1$, $t(4-3t^3) \leq K_{\sigma}(t) \leq t^4$.

Received May 16, 1988, Revised September 8, 1988