ON JORIS' THEOREM ON DIFFERENTIABILITY OF FUNCTIONS

By Ichiro Amemiya and Kazuo Masuda

1. Introduction.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function. If f^2 , $f^3 \in \mathbb{C}^{\infty}$, does it follow that $f \in \mathbb{C}^{\infty}$? The Inverse Function Theorem does not immediately give the answer. In 1982 H. Joris answered this problem affirmatively by showing the following theorem.

THEOREM 1 (H. Joris [J]). Let n_1, n_2, \dots, n_m be positive integers with g.c.d. $\{n_1, n_2, \dots, n_m\} = 1$. If $f: \mathbf{R}^n \to \mathbf{R}$ is a function such that $f^{n_1} \in C^{\infty}$ for $i = 1, 2, \dots, m$, then $f \in C^{\infty}$.

In the same paper H. Joris proposed the next problem.

PROBLEM. Find the other families of smooth functions $\{\phi_i: \mathbf{R} \rightarrow \mathbf{R} | i=1, 2, \dots, m\}$ having the following property: For any function $f: \mathbf{R}^n \rightarrow \mathbf{R}$, f is smooth if and only if $\phi_i \circ f$ is smooth for $i=1, 2, \dots, m$.

If we assume the continuity of f, then we need only consider the germs at x=0 since the study of differentiability is a local problem. In 1985 J. Duncan, S.G. Krantz and H.R. Parks gave a certain family $\{\phi_i\}$ for continuous f.

THEOREM 2 (J. Duncan, S.G. Krantz and H.R. Parks, [D] Theorem 2). Let $\phi_i: \mathbf{R} \rightarrow \mathbf{R}$ be smooth functions such that $\phi_i(x) = x^{n_i} +$ "higher order terms" near x=0 for $i=1, 2, \cdots, m$ with $g.c.d.\{n_1, n_2, \cdots, n_m\}=1$. Then $\{\phi_i\}$ has the following property: For any continuous function $f: \mathbf{R}^n \rightarrow \mathbf{R}$ with f(0)=0, f is smooth near x=0 if and only if $\phi_i \circ f$ is smooth near x=0 for $i=1, 2, \cdots, m$.

In the present paper, we give a simple proof of Joris' Theorem (§ 2) and the necessary and sufficient condition for $\{\phi_i\}$ to have the property mentioned in Theorem 2 (§ 3 Theorem 3). In Appendix (§ 4), we discuss this condition further, especially for polynomials ϕ_i .

2. Simple proof of Joris' Theorem.

The essential part of our proof is the following algebraic lemma.

Received August 4, 1988