M. ITOH KODAI MATH. J. 11 (1988), 344-360

GAUGE FIELDS AND QUATERNION STRUCTURE

BY MITSUHIRO ITOH

Dedicated to Professor M. Obata on his 60th birthday

1. The aim of this article is to discuss geometry of the moduli space of Yang-Mills connections over a 4-manifold with quaternion structure.

Let (M, h) be a compact, connected Riemannian 4-manifold with covariantly constant almost complex structures $\{I_1, I_2, I_3\}$ satisfying $I_1I_2 = -I_2I_1 = I_3$. We call such almost complex structures covariantly constant quaternion structure. Note that only complex flat two-tori and Ricci flat K3 surfaces are such spaces.

Each almost complex structure I_i given on the base space M defines a 2form θ_i on M which is covariantly constant; $\theta_i(X, Y) = h(I_iX, Y)$, i=1, 2, 3. The manifold M carries the canonical orientation compatible with the quaternion structure. The base metric h together with this orientation gives the Hodge operator *; $\Lambda^2(M) \rightarrow \Lambda^2(M)$, which is involutive. So the bundle $\Lambda^2 = \Lambda^2(M)$ splits into $\Lambda^2 = \Lambda^+ + \Lambda^-(\Lambda^+ \text{ and } \Lambda^- \text{ are subbundles of self-dual 2-forms and of anti$ $self-dual 2-forms, respectively). Then over the manifold <math>M \Lambda^+$ becomes trivial. We have indeed the decomposition;

$$\Lambda^{+} = \boldsymbol{R}\boldsymbol{\theta}_{1} \oplus \boldsymbol{R}\boldsymbol{\theta}_{2} \oplus \boldsymbol{R}\boldsymbol{\theta}_{3} \tag{1.1}$$

Let P be a smooth principal bundle over the manifold M with a compact simple Lie group G.

Fix a positive number l>4 in order that analysis on gauge fields works well and denote by $\mathcal{A}=\mathcal{A}_P$ the set of all L_l^2 connections on P. The set \mathcal{A} is an affine space with model vector space $\mathcal{Q}^1(\mathfrak{g}_P)_l$, the space of L_l^2 1-forms over M taking values in the adjoint bundle $\mathfrak{g}_P=P\times_{Ad}\mathfrak{g}(\mathfrak{g}$ is the Lie algebra of G). Then $\mathcal{A}=A+\mathcal{Q}^1(\mathfrak{g}_P)_l$ for some fixed smooth connection A. The subset \mathcal{A}_{ir} in \mathcal{A} consisting of irreducible connections is dense and open relative to the L_l^2 topology. A connection is said to be irreducible if the centralizer of its holonomy group in G reduces to the center Z_G of G.

The group $\mathcal{Q}=\mathcal{Q}_P$ of L^2_{l+1} gauge transformations of P acts on \mathcal{A} smoothly as $g(A)=g^{-1}dg+g^{-1}\cdot A\cdot g$. Remark that $\mathcal{Q}_{/Z_G}$ acts freely on \mathcal{A}_{ir} so that by the slice argument \mathcal{A}_{ir} has a fibration over the orbit space $\mathcal{B}_{ir}=\mathcal{A}_{ir}/(\mathcal{Q}_{/Z_G})$ with fibre $\mathcal{Q}_{/Z_G}$.

Received January 18, 1988