NULL 2-TYPE SURFACES IN E3 ARE CIRCULAR CYLINDERS

By Bang-Yen Chen

Abstract

In this article we prove that open portions of circular cylinders are the only surfaces in E^3 which are constructed from eigenfunctions of Δ with eigenvalue 0 and an eigenvalue λ (\neq 0).

1. Introduction.

Let M be a connected (not necessary compact) surface in a Euclidean 3-space E^3 . Denote by Δ the Laplacian of M associated with the induced metric. Then the position vector x and the mean curvature vector H of M in E^3 satisfy

$$\Delta x = -2H.$$

This formula yields the following well-known result: A surface M in E^3 is minimal if and only if all coordinate functions of E^3 , restricted to M, are harmonic functions, that is,

$$\Delta x = 0.$$

In other words, minimal surfaces are constructed from eigenfunctions of Δ with eigenvalue zero.

According to the famous Douglas and Rado's solutions to the Plateau problem there exist ample examples of minimal surfaces in E^3 . The study of minimal surfaces in E^3 has attracted many mathematicians for many years (cf. [3]).

On the other hand, it is easy to see that circular cylinders in E^3 are constructed from harmonic functions and eigenfunctions of Δ with a nonzero eigenvalue, say λ . The position vector of such a surface admits the following simple spectral decomposition:

(1.3)
$$x = x_0 + x_q$$
, with $\Delta x_0 = 0$ and $\Delta x_q = \lambda x_q$,

for some non-constant maps x_0 and x_q , where λ is a non-zero constant. In the following, we simply call a surface M in a Euclidean space a surface of null 2-type if the position vector x of M has the spectral decomposition (1.3).

Received January 22, 1988