DEFORMATIONS OF SOME ALGEBRAIC SURFACES WITH q=0 AND $p_q=1$

By NAOKI HASHIMOTO

§1. Introduction.

Let M^a be an affine algebraic surface in C^3 defined by $h(w)=1+\sum_{i=1}^{s} w^{A_i}=0$ where A_1 , A_2 , A_3 are linearly independent non-negative integral vectors. Let Δ be the simplex in \mathbb{R}^3 spun by $\vec{0}$, A_1 , A_2 and A_3 . In [6, 7], Oka showed that M^a has a canonical smooth compactification in a toric variety W of dimension three. Let A_4, \dots, A_t be the other integral points on Δ and let $h_t(w)=h(w)$ $+\sum_{i=4}^{t} t_i w^{A_i}$. There exists a Zariski open set U^e of \mathbb{C}^{t-3} such that the family of affine algebraic surfaces $M_t^a = \{h_t(w)=0\}$ $(t \in U^e)$ has a simultaneous smooth compactification M_t in W $(M_0=M)$. This deformation is called the embedded deformation of M ([7]). Let ν_t be the sheaf of the germs of the holomorphic section of the normal bundle of M_t in W and let Θ_t and Θ_W be the sheaves of the germ of holomorphic vector fields of M_t and W respectively. We have the canonical exact sequence:

$$(1.1) 0 \longrightarrow \Theta_t \longrightarrow \Theta_w | M_t \longrightarrow \nu_t \longrightarrow 0.$$

This induces the following long exact sequence:

(1.2)
$$0 \longrightarrow H^{0}(M_{t}, \Theta_{t}) \longrightarrow H^{0}(M_{t}, \Theta_{W} | M_{t}) \longrightarrow H^{0}(M_{t}, \nu_{t})$$
$$\xrightarrow{\delta} H^{1}(M_{t}, \Theta_{t}) \longrightarrow H^{1}(M_{t}, \Theta_{W} | M_{t}) \longrightarrow H^{1}(M_{t}, \nu_{t})$$
$$\longrightarrow \cdots \cdots \cdots \cdot.$$

In [7], Oka has studied the infinitesimal displacement map

(1.3)
$$\xi^e: T_t U^e \longrightarrow H^0(M_t, \nu_t),$$

and the Kodaira-Spencer map $\delta \cdot \xi^e$ where δ is the canonical homomorphism

(1.4)
$$\delta: H^{0}(M_{t}, \nu_{t}) \longrightarrow H^{1}(M_{t}, \Theta_{t}).$$

The dimension of Ker δ is at least 3. He gives an example (See §7, [7]) where dim Ker $\delta=3$ and δ is surjective.

Received September 14, 1987