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1. Introduction.

Let D be a finitely connected plane domain, having more than two non-
degenerate boundary components. We may assume that D is bounded by analytic
curves.

An analytic map f(z) of D is called boundary preserving, if every sequence
{̂ }Γ=i of D tending to the boundary 3D is mapped onto a sequence {/fe)}~=i
tending to the boundary of the image domain A=f(D). A boundary preserving
map f(z) of D covers the image domain Δ finitely many times, N. By making
use of circular slit mappings, we shall show a uniqueness theorem of an analytic
map f(z).

A boundary preserving map f(z) is extended over the doubled surface ί)
and the extended map f{z) is an analytic map of the closed Riemann surface ΐ)
onto the doubled surface Δ. The Seveli -deFranchis' Theorem [3] states that
the number of analytic map from a compact Riemann surface D of genus greater
than one into a compact Riemann surface A of genus greater than one is finite.
Recently A. Howard and A. Sommes [2] gave a bound of the number of analytic
maps of a compact Reimann surface of genus g^2, which was

If the connectivity of D in n ^ 3 , the genus of D is equal to n - 1 . As an ap-
plication of the uniqueness theorem we obtain a simple bound of the number of
boundary preserving maps of D into domain of connectivity ^ 3

2. Uniqueness problem.

Let D be an n-ply connected plane domain bounded by n analytic curves.
Let f(z) be an boundary preserving analytic map of D onto an ra-ply connected
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