ON ANALYTIC MAPS OF PLANE DOMAINS

By James A. Jenkins and Nobuyuki Suita

Dedicated to Professor Kôtaro Oikawa on his 60th birthday

1. Introduction.

Let D be a finitely connected plane domain, having more than two non-degenerate boundary components. We may assume that D is bounded by analytic curves.

An analytic map f(z) of D is called *boundary preserving*, if every sequence $\{z_{\nu}\}_{\nu=1}^{\infty}$ of D tending to the boundary ∂D is mapped onto a sequence $\{f(z_{\nu})\}_{\nu=1}^{\infty}$ tending to the boundary of the image domain $\Delta=f(D)$. A boundary preserving map f(z) of D covers the image domain Δ finitely many times, N. By making use of circular slit mappings, we shall show a uniqueness theorem of an analytic map f(z).

A boundary preserving map f(z) is extended over the doubled surface \hat{D} and the extended map $\hat{f}(z)$ is an analytic map of the closed Riemann surface \hat{D} onto the doubled surface $\hat{\Delta}$. The Seveli -deFranchis' Theorem [3] states that the number of analytic map from a compact Riemann surface \hat{D} of genus greater than one into a compact Riemann surface $\hat{\Delta}$ of genus greater than one is finite. Recently A. Howard and A. Sommes [2] gave a bound of the number of analytic maps of a compact Reimann surface of genus $g \ge 2$, which was

$$(2\sqrt{6}(g-1)+1)^{2+2g^2}g^2(g-1)\sqrt{2}^{8(g-1)}+84(g-1).$$

If the connectivity of D in $n \ge 3$, the genus of D is equal to n-1. As an application of the uniqueness theorem we obtain a simple bound of the number of boundary preserving maps of D into domain of connectivity ≥ 3

$$(n-2)2^{4n-6}$$
.

2. Uniqueness problem.

Let D be an n-ply connected plane domain bounded by n analytic curves. Let f(z) be an boundary preserving analytic map of D onto an m-ply connected

Research supported in Part by the National Science Foundation. Received September 2, 1987