J.Y. PARK KODAI MATH. J. 11 (1988), 8–16

ASYMPTOTIC BEHAVIOR OF PERIODIC SOLUTIONS IN BANACH SPACE

BY JONG YEOUL PARK

1. Introduction.

We consider the following problem:

$$\frac{du(t)}{dt} + Au(t) \exists f(t), \quad t \in (0, \infty),$$

$$u(0) = x, \qquad (1)$$

where A is an *m*-accretive operator in Banach space X and $f \in L^1_{loc}(0, \infty; X)$ is *T*-periodic. Let $\{C_t\}_{t\geq 0}$ be a nonempty closed convex subset of a Banach space and let $U = \{U(t, s): 0 \ge s \ge t\}$ be a nonexpansive operator constrained in $\{C_t\}$, i.e., U is a family of mappings $U(t, s): C_s \rightarrow C_t$ such that

$$U(t, s)U(s, r) = U(t, r), \quad U(r, r) = I,$$

$$|U(t, s)x - U(t, s)y| \le |x - y|$$

for all $0 \le r \le s \le t$ and $x, y \in C_s$. Such an evolution operator U is said to be T-periodic (T>0) if

 $C_{t+T} = C_t$ and U(t+T, s+T) = U(t, s)

for all $0 \le s \le t$. Then, a function $u: [0, \infty) \to X$ is an almost semitrajectory of U if

 $\lim_{s\to\infty}\sup_{t\geq s} |u(t)-U(t, s)u(s)|=0.$

In what follows, let $U = \{U(t, s): 0 \le s \le t\}$ be a *T*-periodic nonexpansive evolution operator constrained in $\{C_t\}$ and we take u(t)=U(t, 0)u(0) for $t\ge 0$. We shall denote u(nT+t) by $u_n(t)$.

If $F(U_t) = \{x : U(T+t, t)x = x \text{ for } 0 \le t \le T\}$ is nonempty, then we can take $z \in F(U_t)$, and we see that

$$\lim_{n\to\infty} |u_n(t)-z| = \rho(t)$$

exists. It is well known [1] that (1) has a unique integral solution U(t; s, x)

Received June 19, 1987