K. MAEHARA KODAI MATH. J. 11 (1988), 1-4

THE MORDELL-BOMBIERI-NOGUCHI CONJECTURE OVER FUNCTION FIELDS

By Kazuhisa Maehara

§1. Introduction. G. Faltings recently proved the Mordell conjecture [F]. The author learned from J. Noguchi that E. Bombieri made the following conjecture generalizing the conjecture above (cf. also [L]):

The set of rational points of any projective variety of general type over an algebraic number field is not Zariski dense.

Noguchi ([N1], [N2]) has obtained some results over function fields which are analogues of the Bombieri conjecture.

CONJECTURE A (Noguchi). Let $f: X \rightarrow S$ be a proper surjective map between non-singular projective varieties over the complex number field. Let σ_{λ} denote the rational sections of f. Assume that a general fibre X_s of f is a variety of general type and that the union of $S_{\lambda} = \sigma_{\lambda}(S)$ is Zariski dense in X. Then X is birationally trivial, i.e., there exists a projective variety X_0 such that X is birational to $X_0 \times S$.

We pose the following conjecture, which implies Conjecture A.

CONJECTURE B. Let X and S be non-singular projective varieties. Then there exists an ample divisor D on S such that for any birational embedding $j_{\lambda}: S \rightarrow X$ we have $O(j_{\lambda}^{*}K_{x}) \subset O(D)$.

Note that when X is the minimal model of a surface with $\kappa(X) \ge 0$, Miyaoka and Umezu proved Conjecture B([MU]). We shall prove Conjecture A with additional assumptions:

MAIN THEOREM. Let $f: X \to S$ be a proper surjective map between nonsingular projective varieties over the complex number field. Let σ_{λ} denote the rational sections of f. Assume that a general fibre X_s of f is a variety of general type and the union of $S_{\lambda} = \sigma_{\lambda}(S)$ is Zariski dense in X. Let P denote the projective bundle $p: P(\Omega_X^s) \to X$, where $s = \dim S$. Furthermore suppose that $O(\alpha)$ $\otimes p^*O(-K_X)$ is $f \circ p$ -nef for some $\alpha > 0$. Then X is birationally trivial over S.

Received May 7, 1987