C. DAI AND L. JIN KODAI MATH. J. 10 (1987). 74-82

NUMBER OF DEFICIENT VALUES OF A CLASS of MEROMORPHIC FUNCTION

By Chongji Dai and Lu Jin

Abstract

We proved the following Theorem

Theorem. Let f(z) be a meromorphic function of lower order $\mu < \infty$. If $\sum \delta(a, f') = 2$ then we have

$$P_0 + P_1 \leq \mu + 1,$$

where P_0, P_1 are the numbers of finite deficient values of f(z), f'(z) respectively.

1. Lemmas.

We need the following four known results.

LEMMA A [1 Theorem 1]. Let f(z) be a meromorphic function of lower order $\mu < \infty$. Assume that there exists a positive integer P which satisfies

$$P - \frac{1}{2} \leq \mu < P + \frac{1}{2}.$$

Assume also that for some $A_0 > 0$ and $0 < \varepsilon < 1$,

$$K(f) = \overline{\lim_{r \to \infty}} \frac{N(r, f) + N(r, 1/f)}{T(r, f)} < \frac{\varepsilon}{A_0(P+1)},$$

then

1) $P \ge 1$.

2) For $r > r_0$ and all $1 < \sigma \leq 36$, we have

$$\begin{cases} T(\sigma r, f) = \sigma^{P} T(r, f)(1 + \eta(r, \sigma)) \\ |\eta(r, \sigma)| < \varepsilon. \end{cases}$$
(1.1)

3) Let $E(\mu, P)$ denotes the Weierstrass primary factor of genus P and a_{ν} , b_{μ} ($\nu=1, 2, \dots; \mu=1, 2, \dots$) are zeros and poles of f(z) respectively, then we have

Received June 6, 1986