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HYPERSURFACES WITH HARMONIC CURVATURE

IN A SPACE OF CONSTANT CURVATURE

BY ERIKO OMACHI

1. Introduction and theorems

A Riemannian curvature tensor R is said to be harmonic if it satisfies

where RtJ means the component of the Ricci tensor, i.e. Rjk=Rι

jik. If the
Ricci tensor is parallel, the curvature is harmonic. However the converse is
generally not true, [2]. Concerning this matter, we obtain some results in the
case of hypersurfaces in a space of non-negative constant curvature. The
purpose of this note is to prove the next theorems:

We denote the ^-dimensional Euclidean space and the ^-dimensional sphere
of curvature c by Ek and Sk(c) respectively.

THEOREM 1. Let Mn be a connected hyper surf ace with harmonic curvature,
isometrically immersed in En+1 by an isometric immersion φ with constant mean
curvature. We denote the second fundamental form by h.

(i) // Mn is complete and trace h4 is constant on Mn, then φ(Mn) is of the
form SpxEn~p, O^P^n.

(ii) // Mn is compact, then φ(Mn) is Sn.

THEOREM 2. Let Mn be a connected hyper surf ace with harmonic curvature,
isometrically immersed in Sn+1(c) by an isometric immersion φ with constant mean
curvature. If Mn is complete and trace /ι4 is constant on Mn, or if Mn is
compact, then φ(Mn) is of the form Sp(r)xSn-p(s), O^p^n, where r=a2+c,

s=β2-\-c, and a and β satisfy aβ+c=0 and pa+(n—p)β=trace h.
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2. The proof of theorems

We consider a hypersurface Mn with harmonic curvature, isometrically
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