SOME RESULTS IN GEOMETRY OF HYPERSURFACES

By Takashi Okayasu

0. Introduction.

In this paper we get several theorems about hypersurfaces in space forms. In section 1, we show that if $x:M^n{\rightarrow}E^{n+1}$ is an isometric immersion of an n-dimensional complete non-compact Riemannian manifold whose sectional curvatures are greater than or equal to 0, then x(M) is unbounded in E^{n+1} . We can prove this using Sacksteder theorem [12] which states that under the above condition x(M) is the boundary of a convex body in E^{n+1} . But his proof is rather long and his theorem is more than what we need. do. Carmo and Lima [3] gave an independent proof of Sacksteder theorem, but it is also long. So we give a direct and easy proof using so-called Beltrami maps which are defined in do. Carmo and Warner [4].

In section 2, we show that if $x: M^n \rightarrow S^{n+1}(1)$ is an isometric immersion of an n-dimensional complete Riemannian manifold whose sectional curvatures are less than or equal to 1 and n is greater than 3, then x(M) is totally geodesic. Ferus almost proved this result in [6], [7]. We consider higher codimensional cases.

All manifolds we consider in this paper are class C^{∞} , connected and have dimensions greater than or equal to 2. All immersions and vector fields are C^{∞} .

The author would like to express his hearty thanks to Professor S. Tanno for constant encouragement and advice.

1. Unboundedness of hypersurfaces.

The Beltrami maps are defined in M. do Carmo and F. Warner [2], and their properties are discussed fully.

Let $\nu \in S^{n+1}(1)$ ($\subset E^{n+2}$), and let H_{ν} denote the open hemisphere of $S^{n+1}(1)$ centered at ν . The Beltrami map β_{ν} is the diffeomorphism of H_{ν} onto the hyperplane $S_{\nu} \subset E^{n+2}$ tangent to $S^{n+1}(1)$ at ν obtained by central projection. We consider S_{ν} to be equipped with the canonical Riemannian structure induced from E^{n+2} . β_{ν} map great spheres of the sphere onto planes of S_{ν} , and vice versa. We call this Beltrami map as spherical Beltrami map.