SOME RESULTS IN GEOMETRY OF HYPERSURFACES ## By Takashi Okayasu ## 0. Introduction. In this paper we get several theorems about hypersurfaces in space forms. In section 1, we show that if $x:M^n{\rightarrow}E^{n+1}$ is an isometric immersion of an n-dimensional complete non-compact Riemannian manifold whose sectional curvatures are greater than or equal to 0, then x(M) is unbounded in E^{n+1} . We can prove this using Sacksteder theorem [12] which states that under the above condition x(M) is the boundary of a convex body in E^{n+1} . But his proof is rather long and his theorem is more than what we need. do. Carmo and Lima [3] gave an independent proof of Sacksteder theorem, but it is also long. So we give a direct and easy proof using so-called Beltrami maps which are defined in do. Carmo and Warner [4]. In section 2, we show that if $x: M^n \rightarrow S^{n+1}(1)$ is an isometric immersion of an n-dimensional complete Riemannian manifold whose sectional curvatures are less than or equal to 1 and n is greater than 3, then x(M) is totally geodesic. Ferus almost proved this result in [6], [7]. We consider higher codimensional cases. All manifolds we consider in this paper are class C^{∞} , connected and have dimensions greater than or equal to 2. All immersions and vector fields are C^{∞} . The author would like to express his hearty thanks to Professor S. Tanno for constant encouragement and advice. ## 1. Unboundedness of hypersurfaces. The Beltrami maps are defined in M. do Carmo and F. Warner [2], and their properties are discussed fully. Let $\nu \in S^{n+1}(1)$ ($\subset E^{n+2}$), and let H_{ν} denote the open hemisphere of $S^{n+1}(1)$ centered at ν . The Beltrami map β_{ν} is the diffeomorphism of H_{ν} onto the hyperplane $S_{\nu} \subset E^{n+2}$ tangent to $S^{n+1}(1)$ at ν obtained by central projection. We consider S_{ν} to be equipped with the canonical Riemannian structure induced from E^{n+2} . β_{ν} map great spheres of the sphere onto planes of S_{ν} , and vice versa. We call this Beltrami map as spherical Beltrami map.