S. SAITOH KODAI MATH. J. 9, (1986), 50−57

ON THE CONVOLUTION OF L_2 FUNCTIONS

BY SABUROU SAITOH

1. Introduction.

For the convolution F^*G of $F \in L_p(-\infty, \infty)$ $(p \ge 1)$ and $G \in L_1(-\infty, \infty)$, we know the fundamental inequality

(1.1)
$$\|F^*G\|_p \leq \|F\|_p \|G\|_1.$$

See, for example, [8, p. 3]. Note that for F, $G \in L_2(-\infty, \infty)$, in general, $F^*G \in L_2(-\infty, \infty)$. In this paper, we will give an identification of a Hilbert space spanned by the convolutions F^*G and establish fundamental inequalities in the convolution. Note that when the space is $L_2(0, \infty)$, the results are very simple and quite different from the present case $L_2(-\infty, \infty)$. See [7].

2. The case of functions with compact supports.

We first consider the case of the convolution F^*G of $F \in L_2(a, b)$ and $G \in L_2(c, d)$. Without loss of generality we assume that $a+d \leq b+c$. Of course, in the convolution we regard F and G as zero in the outsides of the intervals [a, b] and [c, d], respectively. We consider the integral transform, for $F \in L_2(a, b)$ and $z=x+iy \in C$

(2.1)
$$f(z) = \frac{1}{2\pi} \int_{a}^{b} F(t) e^{-izt} dt.$$

As we see from the general theory [5, 6] of integral transforms, the images f(z) form the Hilbert space $H_{(a,b)}$ admitting the reproducing kernel on C

(2.2)
$$K_{(a,b)}(z, \bar{u}) = \frac{1}{2\pi} \int_{a}^{b} e^{-izt} e^{i\bar{u}t} dt.$$

Since the family $\{e^{-izt}; z \in C\}$ is complete in $L_2(a, b)$, we further have the isometrical identity

(2.3)
$$\|f\|_{H(a,b)}^{2} = \frac{1}{2\pi} \int_{a}^{b} |F(t)|^{2} dt.$$

Hence, by using the Fourier transform for (2.1) in the framework of the $L_{\rm 2}$ space, we have

Received March 16, 1985