M. FUJIKI KODAI MATH. J. 9 (1986), 44-49

ON THE GAUSS MAP OF MINIMAL SURFACES IMMERSED IN \mathbb{R}^n

By Masahiko Fujiki

1. Introduction.

The Gauss map of a minimal surface M in \mathbb{R}^n can be considered as a holomorphic mapping from M to the complex quadric Q_{n-2} in the complex projective space $\mathbb{C}P^{n-1}$ with the Fubini-Study metric of constant curvature 2. This paper is devoted to the question, "If a minimal surface M in \mathbb{R}^n has a constant curvature \hat{K} in its Gaussian image, what values of \hat{K} can be possible?".

This question comes from Ricci's classical theorem;

There exists a minimal surface in R^3 which is isometric with M iff (M, ds^2) satisfies Ricci condition:

- (i) Gaussian curvature K of M is negative,
- (ii) the new metric $d\tilde{s}^2 = \sqrt{-K} ds^2$ is flat on *M*.

The condition (ii) is known to be equivalent to the condition " $\hat{K} \equiv 1$ ". (see Lawson [2])

Concerning the question, the following are well-known;

(a) If $\hat{K}\equiv 1$, then M must lie fully in \mathbb{R}^3 or \mathbb{R}^6 . And all the minimal surfaces isometric to M make a two parameter family. (Lawson [2])

(b) Minimal surfaces in R^4 which have constant curvature \hat{K} in their Gaussian images are classified as follows;

i. $\hat{K} \equiv 1$, and M lies in some affine R^3 ,

ii. $\hat{K}\equiv 2$, and M is a holomorphic curve in C^2 .

Here C^2 means R^4 with some orthogonal complex structure. (Osserman-Hoffman [5])

(c) And in R^5 ,

i. $\hat{K} \equiv 1$ or 2, and M lies in R^4 (these are the cases (b).)

ii. $\hat{K} \equiv 1/2$, and the Gaussian image of M can be represented locally as;

$$1/2(1-w^4, i+iw^4, 2w+2w^3, 2iw-2iw^3, 2\sqrt{3}iw^2)$$

(Masal'tsev [4])

To get these results, Calabi's theorem [1] plays the main role. Using the

Received March 11, 1985