B.Y. CHEN KODAI MATH. J. 8 (1985), 358–374

FINITE TYPE SUBMANIFOLDS IN PSEUDO-EUCLIDEAN SPACES AND APPLICATIONS

BY BANG-YEN CHEN

§1. Introduction.

Let E_s^m be the *m*-dimensional pseudo-Euclidean space with (flat) pseudo-Riemannian metric of signature (s, m-s). And let M be a compact space-like submanifold of E_s^m . By using the induced Riemannian structure on M, we can define two well-defined numbers p and q associated with the submanifold M in E_s^m . Here p is a positive integer and q is either $+\infty$ or an integer $\geq p$. The pair [p, q] is called the *order of the submanifold* M (cf. [1]). The submanifold M is said to be of *finite type* if q is finite. Otherwise, M is said to be of *infinite type*. The submanifold M is of finite type if and only if there is a non-trivial polynomial P such $P(\Delta)H=0$; where Δ is the Laplacian Δ on M and H the mean curvature vector of M in E_s^m .

In this paper, we will give some general results for finite type submanifolds in the pseudo-Euclidean space E_s^m . By applying these results, we will prove the following. (1) There exist no compact space-like hypersurfaces with constant mean curvature and constant scalar curvature in the anti-de Sitter space-time; (2) Every compact hypersurface with constant mean curvature and constant scalar curvature in a hyperbolic space is a small hypersphere; and (3) If M is a compact space-like hypersurface of the de Sitter space-time, then M has nonzero constant mean curvature and constant scalar curvature when and only when M is mass-symmetric and of 2-type in the Lorentz-Minkowski world.

For the general knowledge on Finite-Type Submanifolds in Euclidean spaces, see [1, 2]. And for the general knowledge on Relativity, see for instance [3, 4].

§2. Preliminaries.

Let E_s^m be the *m*-dimensional pseudo-Euclidean space with metric tensor given by

(2.1)
$$g_0 = -\sum_{i=1}^{s} dx_i^2 + \sum_{j=s+1}^{m} dx_j^2,$$

where (x_1, \dots, x_m) is a rectangular coordinate system of E_s^m . (E_s^m, g_0) is a flat pseudo-Riemannian manifold of signature (s, m-s).

Received February 5, 1985