A REMARK ON ALGEBRAIC GROUPS ATTACHED TO HODGE-TATE MODULES

By Shuji Yamagata

Let K be a local field of characteristic 0 with the algebraically closed residue field of characteristic p>0. We consider a semi-simple Hodge-Tate module V over K with $V_c = C \bigotimes_{q_p} V = V_c(0) \oplus V_c(1)$, $n_0 = \dim V_c(0) \ge 1$ and $n_1 = \dim V_c(1) \ge 1$. Let H_V be the algebraic group attached to V, H_V^o be the neutral component of H_V and g_V be their Lie algebra.

In [5] Serre has proved that $H_{\nu}=GL_{\nu}$ if n_0 and n_1 are relatively prime and if V is an absolutely simple \mathfrak{g}_{ν} -module. He also remarked the possibility of determination of the structure of H_{ν}^{0} for other cases. For example, in [6] he has proved that all the irreducible components of the root system of H_{ν}^{0} are of type A, B, C or D and furthermore are of type A if V is irreducible of odd dimension.

In this paper we prove that all the irreducible components of the root system of H_V^o are of type A if $n_0 \neq n_1$ and if V is an absolutely simple g_V -module.

§1. Irreducible components of the root system.

In this section we use the following notations (cf. [6], § 3).

Q = the field of rational numbers.

E=a field of characteristic 0.

 G_m =the one-dimensional multiplicative algebraic group over E.

M=a connected reductive algebraic group defined over E.

E'=a finite Galois extension of E over which M splits.

 Γ =the Galois group of E'/E.

C=an algebraically closed field containing E'.

T=a splitting maximal torus of $M_{/E'}$, where $M_{/E'}$ denotes the scalar extension to E' of M.

X = the character group of T.

Y= the group of the one-parameter subgroups of T.

 $X_{\boldsymbol{q}} = \boldsymbol{Q} \otimes X.$

$$Y_{\boldsymbol{\rho}} = \boldsymbol{Q} \otimes Y.$$

 $\langle x, y \rangle (x \in X_q, y \in Y_q) =$ the canonical bilinear form on $X_q \times Y_q$. R = the root system of $M_{IE'}$ relative to T.

Received November 30, 1984