THE CONNECTION BETWEEN THE SYMMETRIC SPACE $\mathbf{E}_{6} / \mathbf{S O}(10) \cdot \mathbf{S O}(2)$ AND PROJECTIVE PLANES

By Kenji Atsuyama

Introduction.

We are interested in symmetric spaces of the three types E III, E VI and E VIII on the same line as projective planes, since we want to understand all exceptional Lie groups geometrically and systematically. The first aim in this paper is to clarify the structure of maximal flat tori in a compact symmetric space Π of the type E III which is constructed in the set of projections associated with involutive automorphisms of the compact simple Lie algebra of the type E_{6} (Theorem 3.6). Next we write down the roots of the symmetric space Π and also give a relation between the roots and the isotropy groups of two points in Π. In Section 5 two objects, points and lines, are introduced into Π, and this space is studied from the viewpoint of projective geometry. Finally it is showed that Π is a projective plane in the wider sense (Theorem 5.10).

1. Preliminaries.

Let \mathfrak{A} be a composition algebra over the real field \boldsymbol{R} and let a, b, c be elements in \mathfrak{A}. If a conjugation $-: a \rightarrow \bar{a}$ is usually defined in \mathfrak{A}, we have a symmetric inner product $(a, b)=1 / 2(a b+\overline{a b})$. If a commutator and an associator are defined by $[a, b]=a b-b a$ and $(a, b, c)=(a b) c-a(b c)$ respectively, any inner derivation of \mathfrak{A} can be generated by $D_{a, b}$, where $D_{a, b}(c)=[[a, b], c]-3(a, b, c)$.

Let $\mathfrak{A}^{(1)} \otimes M^{3} \otimes \mathfrak{H}^{(2)}$ denote an tensor product over \boldsymbol{R} composed of one 3×3 matrix algebra M^{3} with coefficients in \boldsymbol{R} and two composition algebras $\mathfrak{X}^{(i)}$. If the confusion does not occur, we write $a X u$ instead of $a \otimes X \otimes u$, where $a \in$ $\mathfrak{H}^{(1)}, u \in \mathfrak{H}^{(2)}$ and $X \in M^{3}$. In this vector space a product can be defined by $x y=a b X Y u v$ for $x=a X u$ and $y=b Y v$. Furthermore an involution and a trace $T r$ can be introduced by $a X u \rightarrow \bar{a} X^{T} \bar{u}$ and $\operatorname{Tr}(a X u)=a \operatorname{tr}(X) I u$ respectively, where $T: X \rightarrow X^{T}$ is the transposed operator of matrix, $\operatorname{tr}(X)=1 / 3\left(x_{11}+x_{22}+x_{33}\right)$ for $X=\left(x_{\imath j}\right) \in M^{3}$, and I is the 3×3 unit matrix.

Let \mathfrak{M} denote a vector space over \boldsymbol{R} which is generated by all elements in $\mathfrak{A}^{(1)} \otimes M^{3} \otimes \mathfrak{A}^{(2)}$ with the trace $T r$ being 0 and the skew-symmetric form with respect to the involution $a X u \rightarrow \bar{a} X^{T} \bar{u}$. Let $L\left(\mathfrak{H}^{(1)}, M^{3}, \mathfrak{H}^{(2)}\right)$ be the vector space

