ON THE ELASTIC CLOSED PLANE CURVES

By Hiroshi Yanamoto

§ 1. Introduction.

With respect to the total curvature of a closed curve C of class C^{2} in a $3-$ dimensional Euclidean space E^{3}, we have the classical Fenchel inequality ([3] in 1929)

$$
\begin{equation*}
\int_{C} k(s) d s \geqq 2 \pi, \tag{1.1}
\end{equation*}
$$

where s denotes the arc length parameter of C and $k(s)$ the curvature of C. If a closed curve C is knotted in E^{3}, then the Fary inequality

$$
\begin{equation*}
\int_{C} k(s) d s \geqq 4 \pi \tag{1.2}
\end{equation*}
$$

holds good (cf. Fary [2] and J. Milnor [5]).
If a closed curve C is regarded as an elastic rod, then the bending energy $E(C)$ of the deflected curve C from $k=0$ is given by (cf. [4], [8])

$$
\begin{equation*}
E(C)=\frac{1}{2} \int_{C} k^{2}(s) d s \tag{1.3}
\end{equation*}
$$

For any real number t, we get

$$
0 \leqq \int_{C}(k(s)-t)^{2} d s=\int_{C} k^{2}(s) d s-2 t \int_{C} k(s) d s+t^{2} \int_{C} d s
$$

Then, from (1.1) we obtain

$$
\begin{equation*}
E(C)=\frac{1}{2} \int_{C} k^{2}(s) d s \geqq 2 \pi^{2} / L, \tag{1.4}
\end{equation*}
$$

where L is the length of the closed curve C. The equality holds good if and only if C is a circle of radius $L / 2 \pi$ in the plane.

Concerning the inequality (1.4), I. Bives ([1], p. 283) showed the following:
Let M be a circle of radius r, isometrically immersed into E^{N}. If k denotes the curvature function, then

$$
\begin{equation*}
\int_{N} k^{2}(s) d s \geqq 2 \pi / r \tag{1.5}
\end{equation*}
$$

Received June 5, 1984

