G. KOMATSU KODAI MATH, J. 8 (1985), 157-162

HADAMARD'S VARIATIONAL FORMULA FOR THE SZEGÖ KERNEL

BY GEN KOMATSU*

§1. A variational formula. The present note is concerned with the Hadamard's (first) variational formula for the Szegö kernel associated with a strictly pseudo-convex domain in C^n with $n \ge 3$. A similar formula for the Bergman kernel has been given in [7].

Let $\Omega^{0} \subset \mathbb{C}^{n}$ with $n \geq 1$ be a bounded domain with smooth boundary $\partial \Omega^{0}$. Every smoothly perturbed domain of Ω^{0} can be parametrized by a small function $\rho \in \mathbb{C}^{\infty}(\partial \Omega^{0}; \mathbf{R})$ in such a way that the boundary of that domain Ω^{ρ} is given by

(1)
$$\partial \Omega^{\rho} = \{ \zeta + \rho(\zeta) \boldsymbol{\nu}(\zeta) ; \zeta \in \partial \Omega^{0} \},$$

where $\nu(\zeta) = \partial/\partial \nu_{\zeta}$ denotes the unit exterior normal vector to Ω^0 at $\zeta \in \partial \Omega^0$ identified with an element of C^n .

Let $S^{\rho}(z, w)$ for $z, w \in \Omega^{\rho}$ denote the Szegö kernel associated with Ω^{ρ} , which is the reproducing kernel associated with the space $L_b^2 H(\Omega^{\rho})$ of holomorphic functions in Ω^{ρ} with L^2 boundary values equipped with the $L^2(\partial \Omega^{\rho})$ scalar product. With $\delta \rho \in C^{\infty}(\partial \Omega^{0}; \mathbf{R})$ and $z, w \in \Omega^{\rho}$ fixed arbitrarily, we set

(2)
$$\delta S^{\rho}(z, w) = \frac{d}{d\varepsilon} S^{\rho+\varepsilon\delta\rho}(z, w)|_{\varepsilon=0},$$

which is the Hadamard's first variation of $S^{\rho}(z, w)$ at ρ in the direction $\delta \rho$. Our purpose is to show that, for a certain class of domains Ω^{0} , the variation (2) at $\rho=0$ exists and is given by

$$(3) \qquad -\delta S^{0}(z, w) = \int_{\partial Q^{0}} \frac{\partial}{\partial \nu_{\zeta}} \left[S^{0}(z, \zeta) S^{0}(\zeta, w) \right] \cdot \delta \rho(\zeta) d\sigma^{0}(\zeta) + \int_{\partial Q^{0}} S^{0}(z, \zeta) S^{0}(\zeta, w) H^{0}(\zeta) \delta \rho(\zeta) d\sigma^{0}(\zeta) ,$$

where $d\sigma^{0}(\zeta)$ denotes the induced surface measure of $\partial \Omega^{0} \subset C^{n}$ at ζ , and $H^{0}(\zeta)$ stands for the mean curvature of $\partial \Omega^{0}$ at ζ multiplied by 2n-1. A concrete statement of our result is given as follows:

THEOREM. If $\Omega^{\circ} \subset C^n$ is strictly pseudo-convex with $n \ge 3$, then the variation (2) at $\rho = 0$ exists and is given by (3).

Received January 20, 1984.

^{*} Partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.