AN INTRINSIC FIBRE METRIC ON THE *n*-TH SYMMETRIC TENSOR POWER OF THE TANGENT BUNDLE

By Kazuo Azukawa

0. Introduction. Let H(M) be the Hilbert space consisting of all squareintegrable holomorphic *m*-forms on an *m*-dimensional complex manifold M. The Bergman form K is defined as a specific holomorphic 2m-form on the product manifold $M \times \overline{M}$, where \overline{M} is the conjugate complex manifold of M. Let $z = (z^1, \dots, z^m)$ be a coordinate system with defining domain U_z , and k_z be the Bergman function relative to z, i.e. $K(p, \overline{p}) = k_z(p)(dz^1 \wedge \dots \wedge dz^m)_p \wedge (d\overline{z}^1 \wedge \dots \wedge d\overline{z}^m)_{\overline{p}}$, $p \in U_z$. In general, $k_z \ge 0$. In Kobayashi [4], the following conditions are considered:

(A.1) For every $p \in M$, there exists $\alpha \in H(M)$ such that $\alpha(p) \neq 0$.

(A.2) For every non-zero tangent vector X at $p \in M$, there exists $\alpha \in H(M)$ such that $\alpha(p)=0$ and $X.\alpha(p)\neq 0$.

Suppose (A.1) holds. Then $k_z > 0$ for every z, and the Bergman pseudo-metric g, with components $g_{a\bar{b}} = \partial_a \overline{\partial_b} \cdot \log k_z$, is defined. Furthermore, the following is known ([4]):

 (K_1) g is a metric if and only if (A.2) holds.

If *M* satisfies (A.1) and (A.2), and if $R_{a\bar{b}c\bar{d}}$ are the components of the hermitian curvature tensor of the Bergman metric, then the following are known ([4]):

(K₂) Set $\hat{R}_{ac\bar{b}\bar{d}} = R_{a\bar{b}c\bar{d}} + g_{a\bar{b}}g_{c\bar{d}} + g_{a\bar{d}}g_{c\bar{b}}$. Then $\sum \bar{R}_{ac\bar{b}\bar{d}}v^a v^c \bar{v}^b \bar{v}^d \ge 0$ for every $(v^1, \dots, v^m) \in C^m$.

(K_s) $\hat{R}_{ac\overline{b}\overline{a}} = k^{-1}(k_{ac\overline{b}\overline{a}} - k^{-1}k_{ac}k_{\overline{b}\overline{a}}) - k^{-2}\sum g^{\overline{l}s}(k_{ac\overline{l}} - k^{-1}k_{ac}k_{\overline{l}})(k_{s\overline{b}\overline{a}} - k^{-1}k_{\overline{b}\overline{a}}k_{s}),$ where $k = k_z$, $k_{ac} = \partial_a \partial_c \cdot k$, etc., and $(g^{\overline{l}s}) = (g_{a\overline{b}})^{-1}$.

In the preceding joint paper [2] with Burbea, conditions (C_n) are defined so that (C_0) (resp. (C_1)) coincides with (A.1) (resp. (A.2)). Furthermore, under assumption (C_0) , non-negative functions $\mu_{0,n}$, which are biholomorphic invariants, on the tangent bundle are introduced.

In the present paper, we first note (Proposition 1.2) that the functions $\mu_{0,n}$ on the tangent bundle are, in general, upper semi-continuous, and show (Theorem 2.1) that when M satisfies condition (C_0) there exists a unique fibre pseudometric $g^{(n)}$ on the *n*-th symmetric tensor power $S^nT(M)$ of the tangent bundle

Received March 15, 1984