AN INTRINSIC FIBRE METRIC ON THE n-TH SYMMETRIC TENSOR POWER OF THE TANGENT BUNDLE

By Kazuo Azukawa

0. Introduction. Let $H(M)$ be the Hilbert space consisting of all squareintegrable holomorphic m-forms on an m-dimensional complex manifold M. The Bergman form K is defined as a specific holomorphic $2 m$-form on the product manifold $M \times \bar{M}$, where \bar{M} is the conjugate complex manifold of M. Let $z=$ (z^{1}, \cdots, z^{m}) be a coordinate system with defining domain U_{z}, and k_{z} be the Bergman function relative to z, i.e. $K(p, \bar{p})=k_{z}(p)\left(d z^{1} \wedge \cdots \wedge d z^{m}\right)_{p} \wedge\left(d \bar{z}^{1} \wedge \cdots \wedge d \bar{z}^{m}\right)_{\bar{p}}$, $p \in U_{z}$. In general, $k_{z} \geqq 0$. In Kobayashi [4], the following conditions are considered:
(A.1) For every $p \in M$, there exists $\alpha \in H(M)$ such that $\alpha(p) \neq 0$.
(A.2) For every non-zero tangent vector X at $p \in M$, there exists $\alpha \in H(M)$ such that $\alpha(p)=0$ and $X . \alpha(p) \neq 0$.

Suppose (A.1) holds. Then $k_{z}>0$ for every z, and the Bergman pseudo-metric g, with components $g_{a \bar{b}}=\partial_{a} \bar{\partial}_{b} \cdot \log k_{z}$, is defined. Furthermore, the following is known ([4]):
$\left(\mathrm{K}_{1}\right) \quad g$ is a metric if and only if (A.2) holds.
If M satisfies (A.1) and (A.2), and if $R_{a \bar{b} c \bar{d}}$ are the components of the hermitian curvature tensor of the Bergman metric, then the following are known ([4]):
$\left(\mathrm{K}_{2}\right)$ Set $\hat{R}_{a c \bar{c} \bar{d}}=R_{a \bar{b} c \bar{d}}+g_{a \bar{b}} g_{c \bar{d}}+g_{a \bar{d}} g_{c \bar{c}}$. Then $\sum \bar{R}_{a c \bar{b} \bar{d}} v^{a} v^{c} \bar{v}^{b} \bar{v}^{d} \geqq 0$ for every $\left(v^{1}, \cdots, v^{m}\right) \in \boldsymbol{C}^{m}$.
$\left(\mathrm{K}_{3}\right) \quad \hat{R}_{a c \bar{b} \bar{d}}=k^{-1}\left(k_{a c \bar{d}}-k^{-1} k_{a c} k_{\overline{b d}}\right)-k^{-2} \sum g^{i s}\left(k_{a c \bar{c}}-k^{-1} k_{a c} k_{t}\right)\left(k_{s \bar{d}}-k^{-1} k_{\overline{\bar{d}}} k_{s}\right)$, where $k=k_{z}, k_{a c}=\partial_{a} \partial_{c} . k$, etc., and $\left(g^{\bar{T}}\right)=\left(g_{a \bar{b}}\right)^{-1}$.
In the preceding joint paper [2] with Burbea, conditions (C_{n}) are defined so that $\left(C_{0}\right)$ (resp. (C_{1})) coincides with (A.1) (resp. (A.2)). Furthermore, under assumption $\left(C_{0}\right)$, non-negative functions $\mu_{0, n}$, which are biholomorphic invariants, on the tangent bundle are introduced.

In the present paper, we first note (Proposition 1.2) that the functions $\mu_{0, n}$ on the tangent bundle are, in general, upper semi-continuous, and show (Theorem 2.1) that when M satisfies condition (C_{0}) there exists a unique fibre pseudometric $g^{(n)}$ on the n-th symmetric tensor power $S^{n} T(M)$ of the tangent bundle

