SELF-HOMOTOPY EQUIVALENCES OF THE TOTAL SPACES OF A SPHERE BUNDLE OVER A SPHERE

Dedicated to Professor Minoru Nakaoka on his 60th birthday

By Seiya Sasao

§1. Introduction.

In this paper we study the group of homotopy classes of self-homotopy equivalences, $\mathcal{E}(X)$, for the total space of a S^m -bundle over S^n with the condition :

$$3 < m + 1 < n < 2m - 2$$
.

J. W. Rutter determined this group for the case of m=3 and n=7 in [3], and also some generalizations of Rutter's result are given in [4] and [6]. Moreover Y. Nomura computed $\mathcal{E}(X)$ for real and complex Stiefel manifolds in [5]. Then our purpose is to obtain a generalization of these results in a some sense. Let H be the natural representation:

$$H: \mathscr{E}(X) \longrightarrow \operatorname{Aut} H_*(X)$$

which is defined by $H(f)=f_*$ and we denote by $\mathcal{E}_+(X)$ the kernel of H. Then we have an exact sequence

$$\{1\} \longrightarrow \mathcal{E}_+(X) \longrightarrow \mathcal{E}(X) \longrightarrow \operatorname{Aut} H_*(X) \,.$$

Hence it is almost sufficient for us to determine $\mathcal{E}_+(X)$ and *H*-image.

Let $q: X \to S^n$ be the S^m -bundle with the characteristic class $\xi (\in \pi_{n-1}(SO(m+1)))$. James-Whitehead showed in [2] that X has a CW-decomposition:

$$X = S^m \bigcup_{\beta} e^n \bigcup_{\alpha} e^{m+n}$$
 ,

where $\beta = p_*(\xi)$ for the usual projection $p: SO(m+1) \rightarrow S^m$.

Let $P_n^m(\beta)$ be the subgroup of $\pi_n(S^m)$,

$$\{x \mid [e_n, x] \in \beta \circ \pi_{m+n-1}(S^{n-1})\}$$
,

and we denote by η the generator of $\pi_{N+1}(S^N)$. We will prove

Received January 30, 1984