A CHARACTERIZATION OF THE EXPONENTIAL FUNCTION BY PRODUCT II

By Shigeru Kimura

§1. Introduction. In our previous paper [2] we proved the following result.

Theorem A. Suppose that $f(z)$ is an entire function of order $q=2 p+1$ having only negative zeros. Setting $\phi\left(z^{2}\right)=f(z) f(-z), g(z)=\phi(-z) / \phi(0)$, we assume that $g(z)$ is a canonical product. Further we assume that there is an arbitrarily small $\beta>0$ such that if $|g(r)| \geqq 1$,

$$
\log \left|g\left(r e^{2 \beta}\right)\right| \leqq(\cos \beta q / 2) \log |g(r)|
$$

for all sufficiently large r and if $|g(r)| \leqq 1$,

$$
\log \left|g\left(r e^{2 \beta}\right)\right| \geqq(\cos \beta q / 2) \log |g(r)|
$$

for all sufficiently large r. Then $f(z)=e^{P(z)}$ where $P(z)$ is a polynomial of degree q, or else

$$
\lim _{r \rightarrow \infty} \frac{\log M(r, f)}{r^{q}}=+\infty
$$

The purpose of this paper is to improve Theorem A and prove the following.
Theorem. Suppose that $f(z)$ is an entire function of order $q=2 p+1$ having only negative zeros. Setting $\phi\left(z^{2}\right)=f(z) f(-z), g(z)=\phi(-z) / \phi(0)$, we assume that there is an arbitrarily small $\beta>0$ such that if $|g(r)| \geqq 1$ for all sufficiently large r,

$$
\begin{equation*}
\log \left|g\left(r e^{\imath \beta}\right) g\left(r e^{-\imath \beta}\right)\right| \leqq 2(\cos \beta q / 2) \log |g(r)| \tag{1}
\end{equation*}
$$

for all sufficiently large r and if $|g(r)| \leqq 1$ for all sufficiently large r,

$$
\begin{equation*}
\log \left|g\left(r e^{\imath \beta}\right) g\left(r e^{-\imath \beta}\right)\right| \geqq 2(\cos \beta q / 2) \log |g(r)| \tag{2}
\end{equation*}
$$

for all sufficiently large r. Then $f(z)=e^{P(z)}$ where $P(z)$ is a polynomial of degree q, or else

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{\log M(r, f)}{r^{q}}=+\infty \tag{3}
\end{equation*}
$$

Received December 6, 1983.

