ON REAL HYPERSURFACES OF FINITE TYPE OF *CP*^{*m*}

BY A. MARTINEZ AND A. ROS

§1. Introduction.

Let M be a closed Riemannian manifold and Δ the Laplace-Beltrami operator of M acting on the smooth functions $C^{\infty}(M)$. It is well known that Δ is an elliptic operator with a discrete sequence of eigenvalues $0=\lambda_0<\lambda_1<\lambda_2<\cdots<\lambda_k<$ $\cdots\uparrow\infty$. Let V_k be the eigenspace corresponding to the eigenvalue λ_k . Then V_k has finite dimension. Moreover the decomposition is orthogonal respect to the inner product

$$(1.1) (f, g) = \int_{\mathcal{M}} fg dV$$

and $\sum_{k} V_{k}$ is dense in $C^{\infty}(M)$.

Let $x: M \to E^m$ be an isometric immersion of M into the *m*-dimensional Euclidean space with coordinate functions x_i , that is, $x=(x_1, \dots, x_m)$. Then for any $i=1, \dots, m$, we have the decomposition

(1.2)
$$x_i = \sum_k (x_i)_k \qquad (L^2 \text{-sense}).$$

As M is closed, V_0 consists of the constant functions on M and so, from (1.2) we can write

(1.3)
$$x_i - (x_i)_0 = \sum_{k=p_i}^{q_i} (x_i)_k$$

where $q_i = \{ \sup k | (x_i)_k \neq 0 \}$ (respectively, $p_i = \{ \inf k | (x_i)_k \neq 0 \} \}$).

If $p = \underset{i}{\ln\{p_i\}}$ and $q = \underset{i}{\sup}\{q_i\}$ using (1.3) we obtain the following spectral decomposition (in a vector form)

$$(1.4) x-x_0 = \sum_{k=p}^{q} x_k$$

where $x_k : M \to E^m$ are smooth for any k, q is an integer or $q = \infty$, x_0 is a constant and $\Delta x_k = \lambda_k x_k$. x_0 is called center of gravity of M.

We shall say that the immersion x is of *finite type* if $q < \infty$. If not it will be called of *no finite type* [5].

Received December 2, 1983.